Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(25): 256901, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38996231

RESUMEN

We developed a novel quasielastic scattering spectroscopy system that uses a multiline frequency comblike resolution function to overcome the limit on the accessible timescale imposed by the inherent single-energy resolution of conventional spectroscopy systems. The new multiline system possesses multiple resolutions and can efficiently cover a wide time range, from 100 ps to 100 ns, where x-ray-based dynamic measurement techniques are being actively developed. It enables visualization of the relaxation shape and wave-number-dependent dynamic behavior using a two-dimensional detector, as demonstrated for the natural polymer polybutadine without deuteration.

2.
Nat Commun ; 15(1): 5536, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013899

RESUMEN

The radioisotope thorium-229 (229Th) is renowned for its extraordinarily low-energy, long-lived nuclear first-excited state. This isomeric state can be excited by vacuum ultraviolet (VUV) lasers and 229Th has been proposed as a reference transition for ultra-precise nuclear clocks. To assess the feasibility and performance of the nuclear clock concept, time-controlled excitation and depopulation of the 229Th isomer are imperative. Here we report the population of the 229Th isomeric state through resonant X-ray pumping and detection of the radiative decay in a VUV transparent 229Th-doped CaF2 crystal. The decay half-life is measured to 447(25) s, with a transition wavelength of 148.18(42) nm and a radiative decay fraction consistent with unity. Furthermore, we report a new "X-ray quenching" effect which allows to de-populate the isomer on demand and effectively reduce the half-life. Such controlled quenching can be used to significantly speed up the interrogation cycle in future nuclear clock schemes.

3.
ACS Macro Lett ; 13(7): 847-852, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38916259

RESUMEN

The strain dependence of the Johari-Goldstein (JG)-ß relaxation time, as well as the directional dependence, was systematically investigated for stretched cross-linked polybutadiene using time-domain interferometry. We found that the strain dependence of the JG-ß relaxation time is directionally dependent, contrary to expectation: the relaxation time of the JG-ß motion, whose displacement is perpendicular to the stretching direction, decreases with stretching, whereas the relaxation time of the parallel JG-ß motion changes little. This result is distinct from the previously reported strain dependence of the α relaxation time, where the relaxation time increases isotropically with stretching. Thus, the difference in the strain dependence of the relaxation time between the α and JG-ß processes suggests a microscopic origin and requires the modification of the conventional dynamic picture for stretched polymers.

4.
Sci Rep ; 14(1): 12197, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806591

RESUMEN

Extremophile organisms are known that can metabolize at temperatures down to - 25 °C (psychrophiles) and up to 122 °C (hyperthermophiles). Understanding viability under extreme conditions is relevant for human health, biotechnological applications, and our search for life elsewhere in the universe. Information about the stability and dynamics of proteins under environmental extremes is an important factor in this regard. Here we compare the dynamics of small Fe-S proteins - rubredoxins - from psychrophilic and hyperthermophilic microorganisms, using three different nuclear techniques as well as molecular dynamics calculations to quantify motion at the Fe site. The theory of 'corresponding states' posits that homologous proteins from different extremophiles have comparable flexibilities at the optimum growth temperatures of their respective organisms. Although 'corresponding states' would predict greater flexibility for rubredoxins that operate at low temperatures, we find that from 4 to 300 K, the dynamics of the Fe sites in these homologous proteins are essentially equivalent.


Asunto(s)
Extremófilos , Hierro , Rubredoxinas , Hierro/metabolismo , Hierro/química , Extremófilos/metabolismo , Rubredoxinas/química , Rubredoxinas/metabolismo , Simulación de Dinámica Molecular , Temperatura
5.
J Am Chem Soc ; 145(28): 15230-15250, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37414058

RESUMEN

The extradiol dioxygenases (EDOs) and intradiol dioxygenases (IDOs) are nonheme iron enzymes that catalyze the oxidative aromatic ring cleavage of catechol substrates, playing an essential role in the carbon cycle. The EDOs and IDOs utilize very different FeII and FeIII active sites to catalyze the regiospecificity in their catechol ring cleavage products. The factors governing this difference in cleavage have remained undefined. The EDO homoprotocatechuate 2,3-dioxygenase (HPCD) and IDO protocatechuate 3,4-dioxygenase (PCD) provide an opportunity to understand this selectivity, as key O2 intermediates have been trapped for both enzymes. Nuclear resonance vibrational spectroscopy (in conjunction with density functional theory calculations) is used to define the geometric and electronic structures of these intermediates as FeII-alkylhydroperoxo (HPCD) and FeIII-alkylperoxo (PCD) species. Critically, in both intermediates, the initial peroxo bond orientation is directed toward extradiol product formation. Reaction coordinate calculations were thus performed to evaluate both the extra- and intradiol O-O cleavage for the simple organic alkylhydroperoxo and for the FeII and FeIII metal catalyzed reactions. These results show the FeII-alkylhydroperoxo (EDO) intermediate undergoes facile extradiol O-O bond homolysis due to its extra e-, while for the FeIII-alkylperoxo (IDO) intermediate the extradiol cleavage involves a large barrier and would yield the incorrect extradiol product. This prompted our evaluation of a viable mechanism to rearrange the FeIII-alkylperoxo IDO intermediate for intradiol cleavage, revealing a key role in the rebinding of the displaced Tyr447 ligand in this rearrangement, driven by the proton delivery necessary for O-O bond cleavage.


Asunto(s)
Dioxigenasas , Dioxigenasas/química , Compuestos Férricos , Catecoles/química , Análisis Espectral , Compuestos Ferrosos
6.
Faraday Discuss ; 243(0): 253-269, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37067436

RESUMEN

The biological conversion of N2 to NH3 is accomplished by the nitrogenase family, which is collectively comprised of three closely related but unique metalloenzymes. In the present study, we have employed a combination of the synchrotron-based technique of 57Fe nuclear resonance vibrational spectroscopy together with DFT-based quantum mechanics/molecular mechanics (QM/MM) calculations to probe the electronic structure and dynamics of the catalytic components of each of the three unique M N2ase enzymes (M = Mo, V, Fe) in both the presence (holo-) and absence (apo-) of the catalytic FeMco clusters (FeMoco, FeVco and FeFeco). The results described herein provide vibrational mode assignments for important fingerprint regions of the FeMco clusters, and demonstrate the sensitivity of the calculated partial vibrational density of states (PVDOS) to the geometric and electronic structures of these clusters. Furthermore, we discuss the challenges that are faced when employing NRVS to investigate large, multi-component metalloenzymatic systems, and outline the scope and limitations of current state-of-the-art theory in reproducing complex spectra.


Asunto(s)
Nitrogenasa , Nitrogenasa/química , Dominio Catalítico , Análisis Espectral
7.
Science ; 379(6635): 908-912, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862771

RESUMEN

Understanding the strange metallic behavior that develops at the brink of localization in quantum materials requires probing the underlying electronic charge dynamics. Using synchrotron radiation-based Mössbauer spectroscopy, we studied the charge fluctuations of the strange metal phase of ß-YbAlB4 as a function of temperature and pressure. We found that the usual single absorption peak in the Fermi-liquid regime splits into two peaks upon entering the critical regime. We interpret this spectrum as a single nuclear transition, modulated by nearby electronic valence fluctuations whose long time scales are further enhanced by the formation of charged polarons. These critical charge fluctuations may prove to be a distinct signature of strange metals.

8.
Nat Chem Biol ; 19(4): 498-506, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36702959

RESUMEN

[NiFe]-hydrogenases are biotechnologically relevant enzymes catalyzing the reversible splitting of H2 into 2e- and 2H+ under ambient conditions. Catalysis takes place at the heterobimetallic NiFe(CN)2(CO) center, whose multistep biosynthesis involves careful handling of two transition metals as well as potentially harmful CO and CN- molecules. Here, we investigated the sequential assembly of the [NiFe] cofactor, previously based on primarily indirect evidence, using four different purified maturation intermediates of the catalytic subunit, HoxG, of the O2-tolerant membrane-bound hydrogenase from Cupriavidus necator. These included the cofactor-free apo-HoxG, a nickel-free version carrying only the Fe(CN)2(CO) fragment, a precursor that contained all cofactor components but remained redox inactive and the fully mature HoxG. Through biochemical analyses combined with comprehensive spectroscopic investigation using infrared, electronic paramagnetic resonance, Mössbauer, X-ray absorption and nuclear resonance vibrational spectroscopies, we obtained detailed insight into the sophisticated maturation process of [NiFe]-hydrogenase.


Asunto(s)
Cupriavidus necator , Hidrogenasas , Dominio Catalítico , Hidrogenasas/química , Hidrogenasas/metabolismo , Cupriavidus necator/química , Cupriavidus necator/metabolismo , Oxidación-Reducción , Níquel
9.
Inorg Chem ; 62(2): 769-781, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36580657

RESUMEN

Continued efforts are made on the development of earth-abundant metal catalysts for dehydrogenation/hydrolysis of amine boranes. In this study, complex [K-18-crown-6-ether][(NO)2Fe(µ-MePyr)(µ-CO)Fe(NO)2] (3-K-crown, MePyr = 3-methylpyrazolate) was explored as a pre-catalyst for the dehydrogenation of dimethylamine borane (DMAB). Upon evolution of H2(g) from DMAB triggered by 3-K-crown, parallel conversion of 3-K-crown into [(NO)2Fe(N,N'-MePyrBH2NMe2)]- (5) and an iron-hydride intermediate [(NO)2(CO)Fe(µ-H)Fe(CO)(NO)2]- (A) was evidenced by X-ray diffraction/nuclear magnetic resonance/infrared/nuclear resonance vibrational spectroscopy experiments and supported by density functional theory calculations. Subsequent transformation of A into complex [(NO)2Fe(µ-CO)2Fe(NO)2]- (6) is synchronized with the deactivated generation of H2(g). Through reaction of complex [Na-18-crown-6-ether][(NO)2Fe(η2-BH4)] (4-Na-crown) with CO(g) as an alternative synthetic route, isolated intermediate [Na-18-crown-6-ether][(NO)2(CO)Fe(µ-H)Fe(CO)(NO)2] (A-Na-crown) featuring catalytic reactivity toward dehydrogenation of DMAB supports a substrate-gated transformation of a pre-catalyst [(NO)2Fe(µ-MePyr)(µ-CO)Fe(NO)2]- (3) into the iron-hydride species A as an intermediate during the generation of H2(g).

10.
Dalton Trans ; 51(46): 17753-17761, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36346270

RESUMEN

We have performed and analyzed the first combined 151Eu and 57Fe nuclear resonant vibrational spectroscopy (NRVS) for naturally abundant KEu(III)[Fe(II)(CN)6] and Eu(III)[Fe(III)(CN)6] complexes. Comparison of the observed 151Eu vs.57Fe NRVS spectroscopic features confirms that Eu(III) in both KEu(III)[Fe(II)(CN)6] and Eu(III)[Fe(III)(CN)6] occupies a position outside the [Fe(CN)6] core and coordinates to the N atoms of the CN- ions, whereas Fe(III) or Fe(II) occupies the site inside the [Fe(CN)6]4- core and coordinates to the C atoms of the CN- ions. In addition to the spectroscopic interest, the results from this study provide invaluable insights for the design and evaluation of the nanoparticles of such complexes as potential cellular contrast agents for their use in magnetic resonance imaging. The combined 151Eu and 57Fe NRVS measurements are also among the first few explorations of bi-isotopic NRVS experiments.


Asunto(s)
Compuestos Ferrosos , Hierro , Hierro/química , Análisis Espectral
11.
J Am Chem Soc ; 144(47): 21741-21750, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36394993

RESUMEN

Ni and nitrogen-doped carbons are selective catalysts for CO2 reduction to CO (CO2R), but the hypothesized NiNx active sites are challenging to probe with traditional characterization methods. Here, we synthesize 61Ni-enriched model catalysts, termed 61NiPACN, in order to apply 61Ni Mössbauer spectroscopy using synchrotron radiation (61Ni-SR-MS) to characterize the structure of these atomically dispersed NiNx sites. First, we demonstrate that the CO2R results and standard characterization techniques (SEM, PXRD, XPS, XANES, EXAFS) point to the existence of dispersed Ni active sites. Then, 61Ni-SR-MS reveal significant internal magnetic fields of ∼5.4 T, which is characteristic of paramagnetic, high-spin Ni2+, in the 61NiPACN samples. Finally, theoretical calculations for a variety of Ni-Nx moieties confirm that high-spin Ni2+ is stable in non-planar, tetrahedrally distorted geometries, which results in calculated isotropic hyperfine coupling that is consistent with 61Ni-SR-MS measurements.

12.
Rev Sci Instrum ; 93(9): 095101, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182504

RESUMEN

Nuclear resonant vibrational spectroscopy (NRVS) is an excellent modern vibrational spectroscopy, in particular, for revealing site-specific information inside complicated molecules, such as enzymes. There are two different concepts about the energy calibration for a beamline or a monochromator (including a high resolution monochromator): the absolute energy calibration and the practical energy calibration. While the former pursues an as-fine-as-possible and as-repeatable-as-possible result, the latter includes the environment influenced variation from scan to scan, which often needs an in situ calibration measurement to track. However, an in situ measurement often shares a weak beam intensity and therefore has a noisy NRVS spectrum at the calibration sample location, not leading to a better energy calibration/correction in most cases. NRVS users for a long time have noticed that there are energy drifts in the vibrational spectra's zero-energy positions from scan to scan (ΔEi), but their trend has not been explored and utilized in the past. In this publication, after providing a brief introduction to the critical issue(s) in practical NRVS energy calibrations, we have evaluated the trend and the mechanism for these zero-energy drifts (ΔEi) and explored their link to the energy scales (αi) from scan to scan. Via detailed analyses, we have established a new stepwise procedure for carrying out practical energy calibrations, which includes the correction for the scan-dependent energy variations using ΔEi values rather than running additional in situ calibration measurements. We also proved that one additional instrument-fixed scaling constant (α0) exists to convert such "calibrated" energy axis (E') to the real energy axis (Ereal). The "calibrated" real energy axis (Ereal) has a preliminary error bar of ±0.1% (the 2σE divided by the vibrational energy position), which is 4-8 times better than that from the current practical energy calibration procedure.


Asunto(s)
Sincrotrones , Vibración , Calibración , Análisis Espectral/métodos
13.
J Synchrotron Radiat ; 29(Pt 5): 1180-1186, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36073876

RESUMEN

A synchrotron-radiation-based quasi-elastic γ-ray scattering system has been developed that uses time-domain interferometry to observe microscopic polymer dynamics under uniaxial deformation. The stress-producing mechanism of crosslinked polybutadiene has been studied from a microscopic viewpoint. It was found that the mean relaxation time ⟨τ⟩ of the microscopic polymer motion observed over a relatively high temperature (T) range (i.e. T-1 < 0.0045 K-1) increased with elongation on both the intra- and intermolecular scales. Following an extensive strain dependence study, it was found that the strain dependences of both the intra- and intermolecular ⟨τ⟩ changed with the stress dependence. It was therefore suggested that ⟨τ⟩ increased due to the constraint of the local polymer chain motion caused by elongation. The local molecular dynamics of polymer chains under uniaxial deformation could be evaluated at intra- and intermolecular scales separately for the first time using our method.

14.
Phys Rev E ; 105(1): L012605, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35193193

RESUMEN

The Johari-Goldstein-ß (JG-ß) process is widely observed in a variety of glass-forming systems and recognized as an intrinsic process in deeply supercooled and glassy states. However, in some systems, e.g., glycerol, a clear sign of the JG-ß process is often not apparent; for example, an isolated JG-ß peak may not be observed in the dielectric relaxation spectrum. In this study, we directly investigated the angstrom-scale dynamics of glycerol through quasielastic scattering experiments using time-domain interferometry. The relaxation times of the local motions start to decouple from the timescale of the diffusion process and follow the established behavior of the JG-ß process. This finding microscopically indicates the existence of the hidden JG-ß process in glycerol. In addition, we succeeded in determining the decoupling temperature of the JG-ß process by using the spatial-scale selectivity of the quasielastic scattering technique.

15.
J Am Chem Soc ; 143(39): 16007-16029, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34570980

RESUMEN

Methanotrophic bacteria utilize the nonheme diiron enzyme soluble methane monooxygenase (sMMO) to convert methane to methanol in the first step of their metabolic cycle under copper-limiting conditions. The structure of the sMMO Fe(IV)2 intermediate Q responsible for activating the inert C-H bond of methane (BDE = 104 kcal/mol) remains controversial, with recent studies suggesting both "open" and "closed" core geometries for its active site. In this study, we employ nuclear resonance vibrational spectroscopy (NRVS) to probe the geometric and electronic structure of intermediate Q at cryogenic temperatures. These data demonstrate that Q decays rapidly during the NRVS experiment. Combining data from several years of measurements, we derive the NRVS vibrational features of intermediate Q as well as its cryoreduced decay product. A library of 90 open and closed core models of intermediate Q is generated using density functional theory to analyze the NRVS data of Q and its cryoreduced product as well as prior spectroscopic data on Q. Our analysis reveals that a subset of closed core models reproduce these newly acquired NRVS data as well as prior data. The reaction coordinate with methane is also evaluated using both closed and open core models of Q. These studies show that the potent reactivity of Q toward methane resides in the "spectator oxo" of its Fe(IV)2O2 core, in contrast to nonheme mononuclear Fe(IV)═O enzyme intermediates that H atoms abstract from weaker C-H bonds.


Asunto(s)
Compuestos de Hierro/química , Oxigenasas/química , Oxigenasas/metabolismo , Análisis Espectral/métodos , Estructura Molecular , Teoría Cuántica
16.
Phys Rev Lett ; 127(7): 078102, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34459628

RESUMEN

Membrane viscosity is a fundamental property that controls molecular transport and structural rearrangements in lipid membranes. Given its importance in many cell processes, various experimental and computational methods have been developed to measure the membrane viscosity, yet the estimated values depend highly on the method and vary by orders of magnitude. Here we investigate the molecular origins of membrane viscosity by measuring the nanoscale dynamics of the lipid acyl tails using x-ray and neutron spectroscopy techniques. The results show that the membrane viscosity can be estimated from the structural relaxation times of the lipid tails.

17.
Biochemistry ; 60(31): 2419-2424, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34310123

RESUMEN

The human mitochondrial protein, mitoNEET (mNT), belongs to the family of small [2Fe-2S] NEET proteins that bind their iron-sulfur clusters with a novel and characteristic 3Cys:1His coordination motif. mNT has been implicated in the regulation of lipid and glucose metabolisms, iron/reactive oxygen species homeostasis, cancer, and possibly Parkinson's disease. The geometric structure of mNT as a function of redox state and pH is critical for its function. In this study, we combine 57Fe nuclear resonance vibrational spectroscopy with density functional theory calculations to understand the novel properties of this important protein.


Asunto(s)
Cisteína/química , Hierro/química , Lisina/química , Proteínas Mitocondriales/química , Azufre/química , Teoría Funcional de la Densidad , Humanos , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Vibración
18.
J Am Chem Soc ; 143(22): 8237-8243, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34043346

RESUMEN

[FeFe] hydrogenases are highly active catalysts for the interconversion of molecular hydrogen with protons and electrons. Here, we use a combination of isotopic labeling, 57Fe nuclear resonance vibrational spectroscopy (NRVS), and density functional theory (DFT) calculations to observe and characterize the vibrational modes involving motion of the 2-azapropane-1,3-dithiolate (ADT) ligand bridging the two iron sites in the [2Fe]H subcluster. A -13C2H2- ADT labeling in the synthetic diiron precursor of [2Fe]H produced isotope effects observed throughout the NRVS spectrum. The two precursor isotopologues were then used to reconstitute the H-cluster of [FeFe] hydrogenase from Chlamydomonas reinhardtii (CrHydA1), and NRVS was measured on samples poised in the catalytically crucial Hhyd state containing a terminal hydride at the distal Fe site. The 13C2H isotope effects were observed also in the Hhyd spectrum. DFT simulations of the spectra allowed identification of the 57Fe normal modes coupled to the ADT ligand motions. Particularly, a variety of normal modes involve shortening of the distance between the distal Fe-H hydride and ADT N-H bridgehead hydrogen, which may be relevant to the formation of a transition state on the way to H2 formation.


Asunto(s)
Hidrógeno/metabolismo , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Isótopos de Carbono , Teoría Funcional de la Densidad , Deuterio , Hidrógeno/química , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Marcaje Isotópico , Conformación Molecular , Vibración
19.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33876764

RESUMEN

The pterin-dependent nonheme iron enzymes hydroxylate aromatic amino acids to perform the biosynthesis of neurotransmitters to maintain proper brain function. These enzymes activate oxygen using a pterin cofactor and an aromatic amino acid substrate bound to the FeII active site to form a highly reactive FeIV = O species that initiates substrate oxidation. In this study, using tryptophan hydroxylase, we have kinetically generated a pre-FeIV = O intermediate and characterized its structure as a FeII-peroxy-pterin species using absorption, Mössbauer, resonance Raman, and nuclear resonance vibrational spectroscopies. From parallel characterization of the pterin cofactor and tryptophan substrate-bound ternary FeII active site before the O2 reaction (including magnetic circular dichroism spectroscopy), these studies both experimentally define the mechanism of FeIV = O formation and demonstrate that the carbonyl functional group on the pterin is directly coordinated to the FeII site in both the ternary complex and the peroxo intermediate. Reaction coordinate calculations predict a 14 kcal/mol reduction in the oxygen activation barrier due to the direct binding of the pterin carbonyl to the FeII site, as this interaction provides an orbital pathway for efficient electron transfer from the pterin cofactor to the iron center. This direct coordination of the pterin cofactor enables the biological function of the pterin-dependent hydroxylases and demonstrates a unified mechanism for oxygen activation by the cofactor-dependent nonheme iron enzymes.


Asunto(s)
Hierro/metabolismo , Neurotransmisores/biosíntesis , Proteínas Nucleares/metabolismo , Pterinas/química , Proteína Gli2 con Dedos de Zinc/metabolismo , Humanos , Hierro/química , Proteínas Nucleares/química , Oxígeno/metabolismo , Pterinas/metabolismo , Triptófano/química , Triptófano/metabolismo , Proteína Gli2 con Dedos de Zinc/química
20.
Angew Chem Int Ed Engl ; 60(29): 15854-15862, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33783938

RESUMEN

To study metalloenzymes in detail, we developed a new experimental setup allowing the controlled preparation of catalytic intermediates for characterization by various spectroscopic techniques. The in situ monitoring of redox transitions by infrared spectroscopy in enzyme lyophilizate, crystals, and solution during gas exchange in a wide temperature range can be accomplished as well. Two O2 -tolerant [NiFe]-hydrogenases were investigated as model systems. First, we utilized our platform to prepare highly concentrated hydrogenase lyophilizate in a paramagnetic state harboring a bridging hydride. This procedure proved beneficial for 57 Fe nuclear resonance vibrational spectroscopy and revealed, in combination with density functional theory calculations, the vibrational fingerprint of this catalytic intermediate. The same in situ IR setup, combined with resonance Raman spectroscopy, provided detailed insights into the redox chemistry of enzyme crystals, underlining the general necessity to complement X-ray crystallographic data with spectroscopic analyses.


Asunto(s)
Hidrogenasas/química , Hidrogenasas/metabolismo , Solventes/química , Dominio Catalítico , Cristalografía por Rayos X , Liofilización , Modelos Moleculares , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...