Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Pharm ; 20(11): 5901-5909, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37860991

RESUMEN

Mucopolysaccharidoses (MPSs) make up a group of lysosomal storage diseases characterized by the aberrant accumulation of glycosaminoglycans throughout the body. Patients with MPSs display various signs and symptoms, such as retinopathy, which is also observed in patients with MPS II. Unfortunately, retinal disorders in MPS II are resistant to conventional intravenous enzyme-replacement therapy because the blood-retinal barrier (BRB) impedes drug penetration. In this study, we show that a fusion protein, designated pabinafusp alfa, consisting of an antihuman transferrin receptor antibody and iduronate-2-sulfatase (IDS), crosses the BRB and reaches the retina in a murine model of MPS II. We found that retinal function, as assessed by electroretinography (ERG) in MPS II mice, deteriorated with age. Early intervention with repeated intravenous treatment of pabinafusp alfa decreased heparan sulfate deposition in the retina, optic nerve, and visual cortex, thus preserving or even improving the ERG response in MPS II mice. Histological analysis further revealed that pabinafusp alfa mitigated the loss of the photoreceptor layer observed in diseased mice. In contrast, recombinant nonfused IDS failed to reach the retina and hardly affected the retinal disease. These results support the hypothesis that transferrin receptor-targeted IDS can penetrate the BRB, thereby ameliorating retinal dysfunction in MPS II.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Enfermedades de la Retina , Animales , Ratones , Barrera Hematorretinal/metabolismo , Glicosaminoglicanos , Iduronato Sulfatasa/metabolismo , Iduronato Sulfatasa/uso terapéutico , Ácido Idurónico , Mucopolisacaridosis II/tratamiento farmacológico , Mucopolisacaridosis II/diagnóstico , Receptores de Transferrina , Enfermedades de la Retina/tratamiento farmacológico
2.
Mol Ther Methods Clin Dev ; 29: 439-449, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37251981

RESUMEN

Mucopolysaccharidosis I (MPS I), a lysosomal storage disease caused by dysfunction of α-L-iduronidase (IDUA), is characterized by the deposition of dermatan sulfate (DS) and heparan sulfate (HS) throughout the body, which causes several somatic and central nervous symptoms. Although enzyme-replacement therapy (ERT) is currently available to treat MPS I, it does not alleviate central nervous disorders, as it cannot penetrate the blood-brain barrier. Here we evaluate the brain delivery, efficacy, and safety of JR-171, a fusion protein comprising humanized anti-human transferrin receptor antibody Fab and IDUA, using monkeys and MPS I mice. Intravenously administered JR-171 was distributed in major organs, including the brain, and reduced DS and HS concentrations in the central nervous system and peripheral tissues. JR-171 exerted similar effects on peripheral disorders similar to conventional ERT and further reversed brain pathology in MPS I mice. We found that JR-171 improved spatial learning ability, which was seen to deteriorate in the vehicle-treated mice. Further, no safety concerns were noted in repeat-dose toxicity studies in monkeys. This study provides nonclinical evidence that JR-171 might potentially prevent and even improve disease conditions in patients with neuronopathic MPS I without serious safety concerns.

3.
Mol Genet Metab Rep ; 27: 100758, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33981582

RESUMEN

Pabinafusp alfa is a fusion protein comprising a humanized anti-human transferrin receptor (TfR) antibody and human iduronate-2-sulfatase. It was developed as a novel modality to target central nervous system-related symptoms observed in patients with mucopolysaccharidosis type II (MPS II, also known as Hunter syndrome). As the fusion protein contains an entire IgG1 molecule that binds TfR, there may be specific safety concerns, such as unexpected cellular toxicity due to its effector functions or its ability to inhibit iron metabolism, in addition to general safety concerns. Here, we present the comprehensive results of a nonclinical safety assessment of pabinafusp alfa. Pabinafusp alfa did not exhibit effector functions, as assessed by antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity studies in TfR-expressing hematopoietic cells. Repeat-dose toxicity studies in cynomolgus monkeys showed that pabinafusp alfa did not induce any significant toxicological changes at doses up to 30 mg/kg/week upon intravenous administration for up to 26 weeks. Interaction of transferrin with TfR was not inhibited by pabinafusp alfa, suggesting that the effect of pabinafusp alfa on the physiological iron transport system is minimal, which was confirmed by toxicity studies in cynomolgus monkeys. These findings suggest that pabinafusp alfa is expected to be safe for long-term use in individuals with MPS II.

4.
Mol Ther ; 29(5): 1853-1861, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33508431

RESUMEN

Mucopolysaccharidosis II (MPS II), a lysosomal storage disease caused by mutations in iduronate-2-sulfatase (IDS), is characterized by a wide variety of somatic and neurologic symptoms. The currently approved intravenous enzyme replacement therapy with recombinant IDS (idursulfase) is ineffective for CNS manifestations due to its inability to cross the blood-brain barrier (BBB). Here, we demonstrate that the clearance of heparan sulfate (HS) deposited in the brain by a BBB-penetrable antibody-enzyme fusion protein prevents neurodegeneration and neurocognitive dysfunctions in MPS II mice. The fusion protein pabinafusp alfa was chronically administered intravenously to MPS II mice. The drug reduced HS and attenuated histopathological changes in the brain, as well as in peripheral tissues. The loss of spatial learning abilities was completely suppressed by pabinafusp alfa, but not by idursulfase, indicating an association between HS deposition in the brain, neurodegeneration, and CNS manifestations in these mice. Furthermore, HS concentrations in the brain and reduction thereof by pabinafusp alpha correlated with those in the cerebrospinal fluid (CSF). Thus, repeated intravenous administration of pabinafusp alfa to MPS II mice decreased HS deposition in the brain, leading to prevention of neurodegeneration and maintenance of neurocognitive function, which may be predicted from HS concentrations in CSF.


Asunto(s)
Encéfalo/metabolismo , Heparitina Sulfato/metabolismo , Mucopolisacaridosis II/tratamiento farmacológico , Trastornos Neurocognitivos/prevención & control , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes/administración & dosificación , Administración Intravenosa , Animales , Anticuerpos/genética , Barrera Hematoencefálica , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Glicoproteínas/genética , Heparitina Sulfato/líquido cefalorraquídeo , Humanos , Iduronato Sulfatasa/administración & dosificación , Iduronato Sulfatasa/farmacología , Inmunoglobulina G/química , Inmunoglobulina G/genética , Ratones , Mucopolisacaridosis II/líquido cefalorraquídeo , Mucopolisacaridosis II/psicología , Trastornos Neurocognitivos/etiología , Receptores de Transferrina/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Aprendizaje Espacial/efectos de los fármacos
5.
Mol Genet Metab ; 125(1-2): 153-160, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30054149

RESUMEN

Fabry disease (FD) is an X-linked lysosomal storage disease. It is caused by deficiency of the enzyme α-galactosidase A (α-Gal A), which leads to excessive deposition of neutral glycosphingolipids, especially globotriaosylceramide (GL-3), in cells throughout the body. Progressive accumulation of GL-3 causes life-threatening complications in several tissues and organs, including the vasculature, heart, and kidney. Currently available enzyme replacement therapy for FD employs recombinant α-Gal A in two formulations, namely agalsidase alfa and agalsidase beta. Here, we evaluated JR-051 as a biosimilar to agalsidase beta in a non-clinical study. JR-051 was shown to have identical primary and similar higher-order structures to agalsidase beta. Mannose-6-phosphate content was higher in JR-051 than in agalsidase beta, which probably accounts for a slightly better uptake into fibroblasts in vitro. In spite of these differences in in vitro biological features, pharmacokinetic profiles of the two compounds in mice, rats, and monkeys were similar. The ability to reduce GL-3 accumulation in the kidney, heart, skin, liver, spleen, and plasma of Gla-knockout mice, a model of FD, was not different between JR-051 and agalsidase beta. Furthermore, we identified no safety concerns regarding JR-051 in a 13-week evaluation using cynomolgus monkeys. These findings indicate that JR-051 is similar to agalsidase beta in terms of physicochemical and biological properties.


Asunto(s)
Biosimilares Farmacéuticos/administración & dosificación , Enfermedad de Fabry/tratamiento farmacológico , Isoenzimas/administración & dosificación , alfa-Galactosidasa/genética , Animales , Terapia de Reemplazo Enzimático , Enfermedad de Fabry/genética , Enfermedad de Fabry/patología , Fibroblastos , Humanos , Isoenzimas/genética , Riñón/metabolismo , Riñón/patología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Piel/metabolismo , Piel/patología , Bazo/metabolismo , Bazo/patología , Trihexosilceramidas , alfa-Galactosidasa/administración & dosificación
6.
Mol Ther ; 26(5): 1366-1374, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29606503

RESUMEN

Mucopolysaccharidosis II (MPS II) is an X-linked recessive lysosomal storage disease caused by mutations in the iduronate-2-sulfatase (IDS) gene. Since IDS catalyzes the degradation of glycosaminoglycans (GAGs), deficiency in this enzyme leads to accumulation of GAGs in most cells in all tissues and organs, resulting in severe somatic and neurological disorders. Although enzyme replacement therapy with human IDS (hIDS) has been used for the treatment of MPS II, this therapy is not effective for defects in the CNS mainly because the enzyme cannot cross the blood-brain barrier (BBB). Here, we developed a BBB-penetrating fusion protein, JR-141, which consists of an anti-human transferrin receptor (hTfR) antibody and intact hIDS. The TfR-mediated incorporation of JR-141 was confirmed by using human fibroblasts in vitro. When administrated intravenously to hTfR knockin mice or monkeys, JR-141, but not naked hIDS, was detected in the brain. In addition, the intravenous administration of JR-141 reduced the accumulation of GAGs both in the peripheral tissues and in the brain of hTfR knockin mice lacking Ids, an animal model of MPS II. These data provide a proof of concept for the translation of JR-141 to clinical study for the treatment of patients with MPS II with CNS disorders.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Mucopolisacaridosis II/metabolismo , Receptores de Transferrina/antagonistas & inhibidores , Proteínas Recombinantes de Fusión , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/farmacocinética , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Ratones , Ratones Noqueados , Mucopolisacaridosis II/tratamiento farmacológico , Mucopolisacaridosis II/genética , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Distribución Tisular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...