Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Circulation ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682338

RESUMEN

BACKGROUND: Most organs are maintained lifelong by resident stem/progenitor cells. During development and regeneration, lineage-specific stem/progenitor cells can contribute to the growth or maintenance of different organs, whereas fully differentiated mature cells have less regenerative potential. However, it is unclear whether vascular endothelial cells (ECs) are also replenished by stem/progenitor cells with EC-repopulating potential residing in blood vessels. It has been reported recently that some EC populations possess higher clonal proliferative potential and vessel-forming capacity compared with mature ECs. Nevertheless, a marker to identify vascular clonal repopulating ECs (CRECs) in murine and human individuals is lacking, and, hence, the mechanism for the proliferative, self-renewal, and vessel-forming potential of CRECs is elusive. METHODS: We analyzed colony-forming, self-renewal, and vessel-forming potential of ABCG2 (ATP binding cassette subfamily G member 2)-expressing ECs in human umbilical vessels. To study the contribution of Abcg2-expressing ECs to vessel development and regeneration, we developed Abcg2CreErt2;ROSA TdTomato mice and performed lineage tracing during mouse development and during tissue regeneration after myocardial infarction injury. RNA sequencing and chromatin methylation chromatin immunoprecipitation followed by sequencing were conducted to study the gene regulation in Abcg2-expressing ECs. RESULTS: In human and mouse vessels, ECs with higher ABCG2 expression (ABCECs) possess higher clonal proliferative potential and in vivo vessel-forming potential compared with mature ECs. These cells could clonally contribute to vessel formation in primary and secondary recipients after transplantation. These features of ABCECs meet the criteria of CRECs. Results from lineage tracing experiments confirm that Abcg2-expressing CRECs (AbcCRECs) contribute to arteries, veins, and capillaries in cardiac tissue development and vascular tissue regeneration after myocardial infarction. Transcriptome and epigenetic analyses reveal that a gene expression signature involved in angiogenesis and vessel development is enriched in AbcCRECs. In addition, various angiogenic genes, such as Notch2 and Hey2, are bivalently modified by trimethylation at the 4th and 27th lysine residue of histone H3 (H3K4me3 and H3K27me3) in AbcCRECs. CONCLUSIONS: These results are the first to establish that a single prospective marker identifies CRECs in mice and human individuals, which holds promise to provide new cell therapies for repair of damaged vessels in patients with endothelial dysfunction.

2.
Nat Commun ; 14(1): 1129, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854749

RESUMEN

Tissue injury to skin diminishes miR-200b in dermal fibroblasts. Fibroblasts are widely reported to directly reprogram into endothelial-like cells and we hypothesized that miR-200b inhibition may cause such changes. We transfected human dermal fibroblasts with anti-miR-200b oligonucleotide, then using single cell RNA sequencing, identified emergence of a vasculogenic subset with a distinct fibroblast transcriptome and demonstrated blood vessel forming function in vivo. Anti-miR-200b delivery to murine injury sites likewise enhanced tissue perfusion, wound closure, and vasculogenic fibroblast contribution to perfused vessels in a FLI1 dependent manner. Vasculogenic fibroblast subset emergence was blunted in delayed healing wounds of diabetic animals but, topical tissue nanotransfection of a single anti-miR-200b oligonucleotide was sufficient to restore FLI1 expression, vasculogenic fibroblast emergence, tissue perfusion, and wound healing. Augmenting a physiologic tissue injury adaptive response mechanism that produces a vasculogenic fibroblast state change opens new avenues for therapeutic tissue vascularization of ischemic wounds.


Asunto(s)
Fibroblastos , Piel , Cicatrización de Heridas , Animales , Humanos , Ratones , Antagomirs/farmacología , Antagomirs/uso terapéutico , Fibroblastos/metabolismo , Fibroblastos/fisiología , Oligonucleótidos/farmacología , Piel/metabolismo , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología
3.
JCI Insight ; 8(5)2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36692963

RESUMEN

Most circulating endothelial cells are apoptotic, but rare circulating endothelial colony-forming cells (C-ECFCs), also known as blood outgrowth endothelial cells, with proliferative and vasculogenic activity can be cultured; however, the origin and naive function of these C-ECFCs remains obscure. Herein, detailed lineage tracing revealed murine C-ECFCs emerged in the early postnatal period, displayed high vasculogenic potential with enriched frequency of clonal proliferative cells compared with tissue-resident ECFCs, and were not committed to or derived from the BM hematopoietic system but from tissue-resident ECFCs. In humans, C-ECFCs were present in the CD34bright cord blood mononuclear subset, possessed proliferative potential and in vivo vasculogenic function in a naive or cultured state, and displayed a single cell transcriptome sharing some umbilical venous endothelial cell features, such as a higher protein C receptor and extracellular matrix gene expression. This study provides an advance for the field by identifying the origin, naive function, and antigens to prospectively isolate C-ECFCs for translational studies.


Asunto(s)
Células Endoteliales , Matriz Extracelular , Humanos , Animales , Ratones , Estudios Prospectivos , Células Clonales , Receptor de Proteína C Endotelial
4.
Mol Ther ; 31(2): 454-470, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36114673

RESUMEN

Fetal cutaneous wound closure and repair differ from that in adulthood. In this work, we identify an oxidant stress sensor protein, nonselenocysteine-containing phospholipid hydroperoxide glutathione peroxidase (NPGPx), that is abundantly expressed in normal fetal epidermis (and required for fetal wound closure), though not in adult epidermis, but is variably re-induced upon adult tissue wounding. NPGPx is a direct target of the miR-29 family. Following injury, abundance of miR-29 is lowered, permitting a prompt increase in NPGPx transcripts and protein expression in adult wound-edge tissue. NPGPx expression was required to mediate increased keratinocyte migration induced by miR-29 inhibition in vitro and in vivo. Increased NPGPx expression induced increased SOX2 expression and ß-catenin nuclear localization in keratinocytes. Augmenting physiologic NPGPx expression via experimentally induced miR-29 suppression, using cutaneous tissue nanotransfection or targeted lipid nanoparticle delivery of anti-sense oligonucleotides, proved to be sufficient to overcome the deleterious effects of diabetes on this specific pathway to enhance tissue repair.


Asunto(s)
MicroARNs , Cicatrización de Heridas , Embarazo , Humanos , Femenino , Cicatrización de Heridas/genética , Piel/metabolismo , Queratinocitos/metabolismo , Movimiento Celular , MicroARNs/metabolismo
5.
Arch Med Res ; 53(7): 680-687, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36283853

RESUMEN

BACKGROUND: Endothelial colony-forming cells (ECFCs) contribute to postnatal vasculogenesis. In venous thromboembolic disease (VTD), they are functionally abnormal and produce high concentrations of TNF-α. OBJECTIVE: To analyze the TNF-α signaling pathway and its relationship with the expression of cell-cycle regulators. METHODS: Mononuclear cells (MNCs) were collected from the peripheral blood of 20 healthy human volunteers (controls) and 30 patients with VTD matched by age (20-50 years) and sex to obtain ECFCs. We analyzed the relative quantification of the gene transcripts of TNF, NFkB1, PLAU, HMOX1, GSS, eNOS, CDKN1A, and CDKN1B through quantitative RT-PCR (qRT-PCR assays). Identification of NF-κB and activated targets of each pathway: NF-κB (Ser536); IκBα (Ser32/Ser36); p38 (Thr180/Tyr182) JNK (Thr183/Tyr185), p53 and cell-cycle regulators: p16, p18, p21, p27, p57, Cyclin D, Cyclin E, Cyclin A, Cyclin B, CDK2, CDK4; cell-cycle status was determined by KI-67 and 7-AAD. Cells were analyzed with flow cytometry and the FlowJo vX software. RESULTS: In ECFCs from VTD patients, TNF-α receptor and NFkB were overexpressed and hyper-phosphorylated; eNOS and HMOX1 were down-regulated; cell-cycle regulators (p53, p18, p21) were elevated. In addition, the cell cycle was locked in the G2 phase. CONCLUSIONS: Our results strongly suggest that these molecular alterations in the pathway of TNF-α and cell cycle regulation induce endothelial dysfunction, reduced proliferation potential and vascular regeneration, and consequently, the occurrence of new thrombotic events.


Asunto(s)
Autocontrol , Factor de Necrosis Tumoral alfa , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células Endoteliales/metabolismo
6.
Sci Adv ; 8(9): eabm5559, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35245116

RESUMEN

Human induced pluripotent stem cells (hiPSCs) were differentiated into a specific mesoderm subset characterized by KDR+CD56+APLNR+ (KNA+) expression. KNA+ cells had high clonal proliferative potential and specification into endothelial colony-forming cell (ECFCs) phenotype. KNA+ cells differentiated into perfused blood vessels when implanted subcutaneously into the flank of nonobese diabetic/severe combined immunodeficient mice and when injected into the vitreous of type 2 diabetic mice (db/db mice). Transcriptomic analysis showed that differentiation of hiPSCs derived from diabetics into KNA+ cells was sufficient to change baseline differences in gene expression caused by the diabetic status and reprogram diabetic cells to a pattern similar to KNA+ cells derived from nondiabetic hiPSCs. Proteomic array studies performed on retinas of db/db mice injected with either control or diabetic donor-derived KNA+ cells showed correction of aberrant signaling in db/db retinas toward normal healthy retina. These data provide "proof of principle" that KNA+ cells restore perfusion and correct vascular dysfunction in db/db mice.

8.
Cell Stem Cell ; 29(2): 187-188, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120618
9.
Front Bioeng Biotechnol ; 9: 760309, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869270

RESUMEN

The development of an in vitro system for the study of lung vascular disease is critical to understanding human pathologies. Conventional culture systems fail to fully recapitulate native microenvironmental conditions and are typically limited in their ability to represent human pathophysiology for the study of disease and drug mechanisms. Whole organ decellularization provides a means to developing a construct that recapitulates structural, mechanical, and biological features of a complete vascular structure. Here, we developed a culture protocol to improve endothelial cell coverage in whole lung scaffolds and used single-cell RNA-sequencing analysis to explore the impact of decellularized whole lung scaffolds on endothelial phenotypes and functions in a biomimetic bioreactor system. Intriguingly, we found that the phenotype and functional signals of primary pulmonary microvascular revert back-at least partially-toward native lung endothelium. Additionally, human induced pluripotent stem cell-derived endothelium cultured in decellularized lung systems start to gain various native human endothelial phenotypes. Vascular barrier function was partially restored, while small capillaries remained patent in endothelial cell-repopulated lungs. To evaluate the ability of the engineered endothelium to modulate permeability in response to exogenous stimuli, lipopolysaccharide (LPS) was introduced into repopulated lungs to simulate acute lung injury. After LPS treatment, proinflammatory signals were significantly increased and the vascular barrier was impaired. Taken together, these results demonstrate a novel platform that recapitulates some pulmonary microvascular functions and phenotypes at a whole organ level. This development may help pave the way for using the whole organ engineering approach to model vascular diseases.

10.
Nat Commun ; 12(1): 2564, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963183

RESUMEN

Endothelial to mesenchymal transition (EndMT) is a leading cause of fibrosis and disease, however its mechanism has yet to be elucidated. The endothelium possesses a profound regenerative capacity to adapt and reorganize that is attributed to a population of vessel-resident endovascular progenitors (EVP) governing an endothelial hierarchy. Here, using fate analysis, we show that two transcription factors SOX9 and RBPJ specifically affect the murine EVP numbers and regulate lineage specification. Conditional knock-out of Sox9 from the vasculature (Sox9fl/fl/Cdh5-CreER RosaYFP) depletes EVP while enhancing Rbpj expression and canonical Notch signalling. Additionally, skin wound analysis from Sox9 conditional knock-out mice demonstrates a significant reduction in pathological EndMT resulting in reduced scar area. The converse is observed with Rbpj conditionally knocked-out from the murine vasculature (Rbpjfl/fl/Cdh5-CreER RosaYFP) or inhibition of Notch signaling in human endothelial colony forming cells, resulting in enhanced Sox9 and EndMT related gene (Snail, Slug, Twist1, Twist2, TGF-ß) expression. Similarly, increased endothelial hedgehog signaling (Ptch1fl/fl/Cdh5-CreER RosaYFP), that upregulates the expression of Sox9 in cells undergoing pathological EndMT, also results in excess fibrosis. Endothelial cells transitioning to a mesenchymal fate express increased Sox9, reduced Rbpj and enhanced EndMT. Importantly, using topical administration of siRNA against Sox9 on skin wounds can substantially reduce scar area by blocking pathological EndMT. Overall, here we report distinct fates of EVPs according to the relative expression of Rbpj or Notch signalling and Sox9, highlighting their potential plasticity and opening exciting avenues for more effective therapies in fibrotic diseases.


Asunto(s)
Células Endoteliales/metabolismo , Endotelio/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/genética , Animales , Diferenciación Celular/genética , Linaje de la Célula , Endotelio/citología , Femenino , Técnicas de Inactivación de Genes , Proteínas Hedgehog/metabolismo , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Interferente Pequeño , Receptores Notch/metabolismo , Factor de Transcripción SOX9/genética , Factor de Crecimiento Transformador beta/metabolismo , Cicatrización de Heridas/genética
11.
Talanta ; 225: 122021, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33592751

RESUMEN

Frequent on-line and automated monitoring of multiple protein biomarkers level secreted in the culture media during tissue growth is essential for the successful development of Tissue Engineering and Regenerative Medicine (TERM) products. Here, we present a low-cost, rapid, reliable, and integrable anion-exchange membrane-(AEM) based multiplexed sensing platform for this application. Unlike the gold-standard manual ELISA test, incubation/wash steps are optimized for each target and precisely metered in microfluidic chips to enhance selectivity. Unlike optical detection and unreliable visual detection for the ELISA test, which require standardization for every usage, the AEM ion current signal also offers robustness, endowed by the pH and ionic strength control capability of the ion-selective membrane, such that a universal standard curve can be used to calibrate all runs. The electrical signal is enhanced by highly charged silica nanoparticle reporters, which also act as hydrodynamic shear amplifiers to enhance selectivity during wash. This AEM-based sensing platform is tested with vascular protein biomarkers, Endothelin-1 (ET-1), Angiogenin (ANG) and Placental Growth Factor (PlGF). The limit of detection and three-decade dynamic range are comparable to ELISA assay but with a significantly reduced assay time of 1 h vs 7 h, due to the elimination of calibration and blocking steps. Optimized protocol for each target renders the detection highly reliable with more than 98% confidence. The multiplexed detection capability of the platform is also demonstrated by simultaneous detection of ET-1, ANG and PlGF in 40 µl of the vascular endothelial cell culture supernatants using three-membrane AEM sensor and the performance is validated against ELISA.


Asunto(s)
Hidrodinámica , Dióxido de Silicio , Biomarcadores , Ensayo de Inmunoadsorción Enzimática , Factor de Crecimiento Placentario
12.
Methods Mol Biol ; 2206: 27-37, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32754808

RESUMEN

Blood vessel formation is a key feature in physiologic and pathologic processes. Once considered a homogeneous cell population that functions as a passive physical barrier between blood and tissue, endothelial cells (ECs) are now recognized to be quite "heterogeneous." While numerous attempts to enhance endothelial repair and replacement have been attempted using so called "endothelial progenitor cells" it is now clear that a better understanding of the origin, location, and activation of stem and progenitor cells of the resident vascular endothelium is required before attempting exogenous cell therapy approaches. This chapter provides an overview for performance of single-cell clonogenic studies of human umbilical cord blood circulating endothelial colony-forming cells (ECFC) that represent distinct precursors for the endothelial lineage with vessel forming potential.


Asunto(s)
Células Progenitoras Endoteliales/citología , Células Madre/citología , Animales , Endotelio Vascular/citología , Sangre Fetal/citología , Humanos , Neovascularización Patológica/patología
15.
J Alzheimers Dis ; 75(3): 959-969, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32390626

RESUMEN

BACKGROUND: Aberrant angiogenesis may play a role in the development of Alzheimer's disease and related dementia. OBJECTIVE: To explore the relationship between angiogenesis activity and evidence of neurodegeneration among older adults. METHODS: Cross-sectional study of 49 older adults clinically characterized as cognitively normal, mild cognitive impairment, or early Alzheimer's disease. In addition to neuroimaging, we completed assays on peripheral blood, including: vascular endothelial growth factor, tumor necrosis factor, fibroblast growth factor, and amyloid-ß peptide 40. We used advanced polychromatic flow cytometry to phenotype circulating mononuclear cells to assess angiogenesis activity. RESULTS: Although we documented differences in cognitive performance, structural changes on neuroimaging, and burden of amyloid and tau on positron emission tomography, angiogenesis activity did not vary by group. Interestingly, VEGF levels were shown to be increased among subjects with mild cognitive impairment. In ANCOVA models controlling for age, sex, intracranial volume, and monocyte subpopulations, angiogenesis activity was correlated with increased white matter hyperintensities. CONCLUSION: We demonstrate a significant association between angiogenesis activity and cerebrovascular disease. To better understand the potential of angiogenesis as an intervention target, longitudinal studies are needed.


Asunto(s)
Encéfalo/patología , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/patología , Demencia/diagnóstico , Demencia/patología , Neovascularización Patológica/diagnóstico , Anciano , Biomarcadores/sangre , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/sangre , Disfunción Cognitiva/complicaciones , Estudios Transversales , Demencia/sangre , Demencia/complicaciones , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Neovascularización Patológica/sangre , Neovascularización Patológica/complicaciones , Tomografía de Emisión de Positrones
16.
Nat Protoc ; 15(3): 1066-1081, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32005982

RESUMEN

Endothelial cells (ECs) are fundamental components of the blood vessels that comprise the vascular system; facilitate blood flow; and regulate permeability, angiogenesis, inflammatory responses and homeostatic tissue maintenance. Accumulating evidence suggests there is EC heterogeneity in vivo. However, isolation of fresh ECs from adult mice to investigate this further is challenging. Here, we describe an easy and reproducible protocol for isolation of different types of ECs and CD157+ vascular-resident endothelial stem cells (VESCs) by mechano-enzymatic tissue digestion followed by fluorescence-activated cell sorting. The procedure was established on liver tissue but can be used to isolate ECs from other organs with minimal modification. Preparation of single-cell suspensions can be completed in 2.5 h. We also describe assays for EC clonal and network formation, as well as transcriptomic analysis of isolated ECs. The protocol enables isolation of primary ECs and VESCs that can be used for a wide range of downstream analyses in vascular research.


Asunto(s)
Técnicas Citológicas/métodos , Células Endoteliales/fisiología , Hígado/citología , Células Madre/fisiología , Animales , Ratones
17.
Sci Rep ; 10(1): 1136, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980720

RESUMEN

One current concept suggests that unchecked proliferation of clonally selected precursors of endothelial cells (ECs) contribute to severe pulmonary arterial hypertension (PAH). We hypothesized that clonally selected ECs expressing the progenitor marker CD117 promote severe occlusive pulmonary hypertension (PH). The remodelled pulmonary arteries of PAH patients harboured CD117+ ECs. Rat lung CD117+ ECs underwent four generations of clonal expansion to enrich hyperproliferative ECs. The resulting clonally enriched ECs behaved like ECs, as measured by in vitro and in vivo angiogenesis assays. The same primitive ECs showed a limited ability for mesenchymal lineage differentiation. Endothelial differentiation and function were enhanced by blocking TGF-ß signalling, promoting bone morphogenic protein (BMP) signalling. The transplantation of the EC clones caused arterio-occlusive PH in rats exposed to chronic hypoxia. These EC clones engrafted in the pulmonary arteries. Yet cessation of chronic hypoxia promoted lung cell apoptosis and resolution of vascular lesions. In conclusion, this is to the best of our knowledge, the first report that clonally enriched primitive ECs promote occlusive pulmonary arteriopathy and severe PH. These primitive EC clones further give rise to cells of endothelial and mesenchymal lineage as directed by BMP and TGF-ß signaling.


Asunto(s)
Arteriopatías Oclusivas/etiología , Células Endoteliales/patología , Hipertensión Pulmonar/etiología , Hipoxia/patología , Arteria Pulmonar/patología , Animales , Apoptosis , Arteriopatías Oclusivas/patología , Proteínas Morfogenéticas Óseas/fisiología , Linaje de la Célula , Separación Celular , Células Cultivadas , Enfermedad Crónica , Células Clonales , Células Endoteliales/química , Células Endoteliales/trasplante , Citometría de Flujo , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Hipoxia/complicaciones , Masculino , Mesodermo/citología , Proteínas Proto-Oncogénicas c-kit/análisis , Ratas , Ratas Sprague-Dawley , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Transducción de Señal , Transcriptoma , Factor de Crecimiento Transformador beta/fisiología
18.
Cardiovasc Res ; 116(2): 393-405, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30937452

RESUMEN

AIMS: Cord blood-derived endothelial colony-forming cells (CB-ECFCs) are a defined progenitor population with established roles in vascular homeostasis and angiogenesis, which possess low immunogenicity and high potential for allogeneic therapy and are highly sensitive to regulation by reactive oxygen species (ROS). The aim of this study was to define the precise role of the major ROS-producing enzyme, NOX4 NADPH oxidase, in CB-ECFC vasoreparative function. METHODS AND RESULTS: In vitro CB-ECFC migration (scratch-wound assay) and tubulogenesis (tube length, branch number) was enhanced by phorbol 12-myristate 13-acetate (PMA)-induced superoxide in a NOX-dependent manner. CB-ECFCs highly-expressed NOX4, which was further induced by PMA, whilst NOX4 siRNA and plasmid overexpression reduced and potentiated in vitro function, respectively. Increased ROS generation in NOX4-overexpressing CB-ECFCs (DCF fluorescence, flow cytometry) was specifically reduced by superoxide dismutase, highlighting induction of ROS-specific signalling. Laser Doppler imaging of mouse ischaemic hindlimbs at 7 days indicated that NOX4-knockdown CB-ECFCs inhibited blood flow recovery, which was enhanced by NOX4-overexpressing CB-ECFCs. Tissue analysis at 14 days revealed consistent alterations in vascular density (lectin expression) and eNOS protein despite clearance of injected CB-ECFCs, suggesting NOX4-mediated modulation of host tissue. Indeed, proteome array analysis indicated that NOX4-knockdown CB-ECFCs largely suppressed tissue angiogenesis, whilst NOX4-overexpressing CB-ECFCs up-regulated a number of pro-angiogenic factors specifically-linked with eNOS signalling, in parallel with equivalent modulation of NOX-dependent ROS generation, suggesting that CB-ECFC NOX4 signalling may promote host vascular repair. CONCLUSION: Taken together, these findings indicate a key role for NOX4 in CB-ECFCs, thereby highlighting its potential as a target for enhancing their reparative function through therapeutic priming to support creation of a pro-reparative microenvironment and effective post-ischaemic revascularization.


Asunto(s)
Células Progenitoras Endoteliales/trasplante , Isquemia/cirugía , Músculo Esquelético/irrigación sanguínea , NADPH Oxidasa 4/metabolismo , Neovascularización Fisiológica , Animales , Movimiento Celular , Células Cultivadas , Microambiente Celular , Modelos Animales de Enfermedad , Células Progenitoras Endoteliales/enzimología , Sangre Fetal/citología , Miembro Posterior , Humanos , Isquemia/enzimología , Isquemia/genética , Isquemia/fisiopatología , Ratones Endogámicos NOD , NADPH Oxidasa 4/genética , Especies Reactivas de Oxígeno/metabolismo , Recuperación de la Función , Transducción de Señal
19.
Nat Commun ; 10(1): 5649, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31827082

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP) increases with age and is associated with increased risks of hematological malignancies. While TP53 mutations have been identified in CHIP, the molecular mechanisms by which mutant p53 promotes hematopoietic stem and progenitor cell (HSPC) expansion are largely unknown. Here we discover that mutant p53 confers a competitive advantage to HSPCs following transplantation and promotes HSPC expansion after radiation-induced stress. Mechanistically, mutant p53 interacts with EZH2 and enhances its association with the chromatin, thereby increasing the levels of H3K27me3 in genes regulating HSPC self-renewal and differentiation. Furthermore, genetic and pharmacological inhibition of EZH2 decreases the repopulating potential of p53 mutant HSPCs. Thus, we uncover an epigenetic mechanism by which mutant p53 drives clonal hematopoiesis. Our work will likely establish epigenetic regulator EZH2 as a novel therapeutic target for preventing CHIP progression and treating hematological malignancies with TP53 mutations.


Asunto(s)
Epigénesis Genética , Enfermedades Hematológicas/metabolismo , Hematopoyesis , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/fisiopatología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Metilación , Ratones Endogámicos C57BL , Mutación , Unión Proteica
20.
JCI Insight ; 4(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31672944

RESUMEN

Retinopathy of prematurity (ROP) is a disorder of the developing retina of preterm infants. ROP can lead to blindness because of abnormal angiogenesis that is the result of suspended vascular development and vaso-obliteration leading to severe retinal stress and hypoxia. We tested the hypothesis that the use of the human progenitor cell combination, bone marrow-derived CD34+ cells and vascular wall-derived endothelial colony-forming cells (ECFCs), would synergistically protect the developing retinal vasculature in a mouse model of ROP, called oxygen-induced retinopathy (OIR). CD34+ cells alone, ECFCs alone, or the combination thereof were injected intravitreally at either P5 or P12 and pups were euthanized at P17. Retinas from OIR mice injected with ECFCs or the combined treatment revealed formation of the deep vascular plexus (DVP) while still in hyperoxia, with normal-appearing connections between the superficial vascular plexus (SVP) and the DVP. In addition, the combination of cells completely prevented aberrant retinal neovascularization and was more effective anatomically and functionally at rescuing the ischemia phenotype than either cell type alone. We show that the beneficial effects of the cell combination are the result of their ability to orchestrate an acceleration of vascular development and more rapid ensheathment of pericytes on the developing vessels. Lastly, our proteomic and transcriptomic data sets reveal pathways altered by the dual cell therapy, including many involved in neuroretinal maintenance, and principal component analysis (PCA) showed that cell therapy restored OIR retinas to a state that was closely associated with age-matched normal retinas. Together, these data herein support the use of dual cell therapy as a promising preventive treatment for the development of ROP in premature infants.


Asunto(s)
Terapia por Inhalación de Oxígeno/efectos adversos , Neovascularización Retiniana/etiología , Retinopatía de la Prematuridad/complicaciones , Retinopatía de la Prematuridad/prevención & control , Células Madre/citología , Animales , Antígenos CD34/inmunología , Modelos Animales de Enfermedad , Ratones , Retinopatía de la Prematuridad/patología , Células Madre/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...