Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Anat ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039731

RESUMEN

Talpid moles (Talpidae, Eulipotyphla) are mammals highly specialised in burrowing using their forelimbs. Fossoriality has allowed moles to expand their ecological niche by enabling access to subterranean resources and spaces. This specialisation in burrowing has led to adaptations in the forelimb bones of moles for humeral rotation digging, a distinctive strategy unparalleled among other diggers. While bone robustness has been examined in moles through external morphology, the adaptation of bone microstructure to digging strategy remains unclear. Based on two assumptions, (1) the humerus of moles is subjected to a torsional load due to humeral rotation digging, and (2) the magnitude of torsional load correlates with the compactness of the substrate in which the individuals can dig, we hypothesised that humeral rotation digging influences bone microstructure. Comparative analyses of transverse sections from the humeri and femora of three mole species (Mogera imaizumii, Mogera wogura and Urotrichus talpoides; Talpidae) and an outgroup eulipotyphlan (Suncus murinus; Soricidae) revealed that (1) vascular canals distributed in the humeri of moles align more predominantly circumferential along the bone walls, indicating an adaptation to the torsion generated by humeral rotation digging, and (2) the laminarity of vascular canals, particularly in Mogera species compared with Urotrichus, potentially reflects differences in the magnitude of load due to substrate compactness during digging. The aligned vascular canals are distinctive traits not observed in mammals employing other digging strategies. This suggests that vascular canal laminarity can be an indicator of not only humeral rotation digging in fossorial animals, but also the variation of eco-spaces in talpid species.

2.
Parasitol Int ; 83: 102313, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33662527

RESUMEN

Reports of zoonotic infections with Onchocerca japonica (Nematoda: Filarioidea), which parasitizes the Japanese wild boar, Sus scrofa leucomystax, have recently increased in Japan. To predict the occurrence of infection in humans, it is necessary to determine the prevalence of O. japonica infection in the natural host animals. We investigated the presence of adult worms in the footpads, and of microfilariae in skin snips, taken from the host animals, between 2000 and 2018. Onchocerca japonica was found in 165 of 223 (74%) Japanese wild boars in Honshu and Kyushu. Among the nine regions studied, the highest prevalence of O. japonica infection was found in Oita, Kyushu, where 47 of 52 (90.4%) animals were infected. The ears were the predilection sites for O. japonica microfilariae. Adult worms of O. japonica were found more frequently in the hindlimbs than in the forelimbs of the host animals. Onchocerca takaokai was found in 14 of 52 (26.9%) Japanese wild boars in Oita. In Kakeroma Island among the Nansei Islands, both O. japonica and O. takaokai were isolated from the Ryukyu wild boar, S. s. riukiuanus. These observations could help predict future occurrences of human zoonotic onchocercosis in Japan.


Asunto(s)
Onchocerca/aislamiento & purificación , Oncocercosis/veterinaria , Enfermedades de los Porcinos/epidemiología , Zoonosis/epidemiología , Animales , Japón/epidemiología , Oncocercosis/epidemiología , Oncocercosis/parasitología , Prevalencia , Sus scrofa , Porcinos , Enfermedades de los Porcinos/parasitología , Zoonosis/parasitología
3.
Sci Rep ; 6: 23601, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-27005329

RESUMEN

The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident that occurred after the Great East Japan Earthquake in March 2011 released large quantities of radionuclides to the environment. The long-term effects of radioactive cesium (Cs) on biota are of particular concern. We investigated the accumulation of radioactive Cs derived from the FDNPP accident, and chronic effects of environmental radionuclides on male reproduction, in the large Japanese field mouse (Apodemus speciosus). In 2013 and 2014, wild mice were captured at 2 sites in Fukushima Prefecture and at 2 control sites that were distant from Fukushima. Although the median concentrations of (134)Cs and (137)Cs in the mice from Fukushima exceeded 4,000 Bq/kg, there were no significant differences in the apoptotic cell frequencies or the frequencies of morphologically abnormal sperm among the capture sites. Thus, we conclude that radiation did not cause substantial male subfertility in Fukushima during 2013 and 2014, and radionuclide pollution levels in the study sites would not be detrimental to spermatogenesis of the wild mice in Fukushima.


Asunto(s)
Radioisótopos de Cesio/análisis , Espermatogénesis/efectos de la radiación , Testículo/química , Testículo/efectos de la radiación , Animales , Supervivencia Celular/efectos de la radiación , Accidente Nuclear de Fukushima , Japón , Masculino , Ratones , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo/análisis , Contaminantes Radiactivos del Agua/análisis
4.
J Vet Med Sci ; 77(7): 799-807, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25754934

RESUMEN

The large Japanese field mouse, Apodemus speciosus, is a potential indicator of environmental stress, but this function has not been confirmed by histological studies. Since environmental stress affects the reproductive function of mice, we determined the reproductive characteristics of this species at two locations: Toyama (36°35'N, 137°24'E) and Aomori (40°35'N, 140°57'E). Mice were captured during May-November (n=119) and July-November (n=146) at these locations, respectively. We classified the breeding season from the numbers of pregnant females and young, in addition to the spermatogenic cycle and seasonal changes in seminiferous tubule morphology of males. Testicular weight was measured, and seminiferous tubule morphology was examined histologically. Fourteen stages were found in the seminiferous epithelium cycle based on acrosome formation and spermatid head morphology. At both locations, the breeding season peaked from late summer to early autumn and possibly in spring. Spermatogenic activity was classified into 4 periods from June to November: resting around June and October-November; resumptive around July; active around August; and degenerative around September. During the resting period, the seminiferous tubules consisted of Sertoli cells, spermatogonia and spermatocytes. Spermatogenesis began during the resumptive period, and spermatids were observed. During the active period, active spermatogenesis and a broad lumen were observed. During the degenerative period, spermatogenesis ended, and Sertoli cells, spermatogonia, spermatocytes and degenerating exfoliated round spermatids were observed. This study provides scientific information about the testicular histopathological evaluations of the large Japanese field mouse for its use as an index species of environmental pollution.


Asunto(s)
Murinae/fisiología , Túbulos Seminíferos/anatomía & histología , Espermatogénesis/fisiología , Animales , Femenino , Japón , Masculino , Murinae/anatomía & histología , Embarazo , Reproducción/fisiología , Estaciones del Año , Túbulos Seminíferos/fisiología , Testículo/anatomía & histología , Testículo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...