Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712168

RESUMEN

The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated protein conformers. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration. Manipulating this network can: (a) reduce Hsp70 collaboration without enhancing activity; (b) generate Hsp104 hypomorphs that collaborate selectively with class B Hsp40s; (c) produce Hsp70-independent potentiated variants; or (d) create species barriers between Hsp104 and Hsp70. Conversely, ADP-specific intraprotomer contacts between MD helix L2 and NBD1 restrict activity, and their perturbation frequently potentiates Hsp104. Importantly, adjusting the NBD1:MD helix L1 rheostat via rational design enables finely tuned collaboration with Hsp70 to safely potentiate Hsp104, minimize off-target toxicity, and counteract FUS proteinopathy in human cells. Thus, we establish important design principles to tailor Hsp104 therapeutics.

2.
Sci Adv ; 9(7): eadg2997, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36791199

RESUMEN

The assembly of the autophagy initiation machinery nucleates autophagosome biogenesis, including in the PINK1- and Parkin-dependent mitophagy pathway implicated in Parkinson's disease. The structural interaction between the sole transmembrane autophagy protein, autophagy-related protein 9A (ATG9A), and components of the Unc-51-like autophagy activating kinase (ULK1) complex is one of the major missing links needed to complete a structural map of autophagy initiation. We determined the 2.4-Å x-ray crystallographic structure of the ternary structure of ATG9A carboxyl-terminal tail bound to the ATG13:ATG101 Hop1/Rev7/Mad2 (HORMA) dimer, which is part of the ULK1 complex. We term the interacting portion of the extreme carboxyl-terminal part of the ATG9A tail the "HORMA dimer-interacting region" (HDIR). This structure shows that the HDIR binds to the HORMA domain of ATG101 by ß sheet complementation such that the ATG9A tail resides in a deep cleft at the ATG13:ATG101 interface. Disruption of this complex in cells impairs damage-induced PINK1/Parkin mitophagy mediated by the cargo receptor NDP52.


Asunto(s)
Proteínas de la Membrana , Mitofagia , Proteínas Relacionadas con la Autofagia/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas Quinasas/genética
3.
Sci Adv ; 8(37): eadd2926, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36103527

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) regulates cell growth and catabolism in response to nutrients through phosphorylation of key substrates. The tumor suppressor folliculin (FLCN) is a RagC/D guanosine triphosphatase (GTPase)-activating protein (GAP) that regulates mTORC1 phosphorylation of MiT-TFE transcription factors, controlling lysosome biogenesis and autophagy. We determined the cryo-electron microscopy structure of the active FLCN complex (AFC) containing FLCN, FNIP2, the N-terminal tail of SLC38A9, the RagAGDP:RagCGDP.BeFx- GTPase dimer, and the Ragulator scaffold. Relative to the inactive lysosomal FLCN complex structure, FLCN reorients by 90°, breaks contact with RagA, and makes previously unseen contacts with RagC that position its Arg164 finger for catalysis. Disruption of the AFC-specific interfaces of FLCN and FNIP2 with RagC eliminated GAP activity and led to nuclear retention of TFE3, with no effect on mTORC1 substrates S6K or 4E-BP1. The structure provides a basis for regulation of an mTORC1 substrate-specific pathway and a roadmap to discover MiT-TFE family selective mTORC1 antagonists.

4.
Proc Natl Acad Sci U S A ; 119(29): e2204536119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858336

RESUMEN

The endosomal sorting complexes required for transport (ESCRT) system is an ancient and ubiquitous membrane scission machinery that catalyzes the budding and scission of membranes. ESCRT-mediated scission events, exemplified by those involved in the budding of HIV-1, are usually directed away from the cytosol ("reverse topology"), but they can also be directed toward the cytosol ("normal topology"). The ESCRT-III subunits CHMP1B and IST1 can coat and constrict positively curved membrane tubes, suggesting that these subunits could catalyze normal topology membrane severing. CHMP1B and IST1 bind and recruit the microtubule-severing AAA+ ATPase spastin, a close relative of VPS4, suggesting that spastin could have a VPS4-like role in normal-topology membrane scission. Here, we reconstituted the process in vitro using membrane nanotubes pulled from giant unilamellar vesicles using an optical trap in order to determine whether CHMP1B and IST1 are capable of membrane severing on their own or in concert with VPS4 or spastin. CHMP1B and IST1 copolymerize on membrane nanotubes, forming stable scaffolds that constrict the tubes, but do not, on their own, lead to scission. However, CHMP1B-IST1 scaffolded tubes were severed when an additional extensional force was applied, consistent with a friction-driven scission mechanism. We found that spastin colocalized with CHMP1B-enriched sites but did not disassemble the CHMP1B-IST1 coat from the membrane. VPS4 resolubilized CHMP1B and IST1 without leading to scission. These observations show that the CHMP1B-IST1 ESCRT-III combination is capable of severing membranes by a friction-driven mechanism that is independent of VPS4 and spastin.


Asunto(s)
Membrana Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte , Proteínas Oncogénicas , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Fricción , Humanos , Proteínas Oncogénicas/metabolismo , Espastina/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo
5.
Sci Adv ; 7(17)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33893090

RESUMEN

Selective autophagy of damaged mitochondria, protein aggregates, and other cargoes is essential for health. Cargo initiates phagophore biogenesis, which entails the conjugation of LC3 to phosphatidylethanolamine. Current models suggest that clustered ubiquitin chains on a cargo trigger a cascade from autophagic cargo receptors through the core complexes ULK1 and class III phosphatidylinositol 3-kinase complex I, WIPI2, and the ATG7, ATG3, and ATG12ATG5-ATG16L1 machinery of LC3 lipidation. This was tested using giant unilamellar vesicles (GUVs), GST-Ub4 as a model cargo, the cargo receptors NDP52, TAX1BP1, and OPTN, and the autophagy core complexes. All three cargo receptors potently stimulated LC3 lipidation on GUVs. NDP52- and TAX1BP1-induced LC3 lipidation required all components, but not ULK1 kinase activity. However, OPTN bypassed the ULK1 requirement. Thus, cargo-dependent stimulation of LC3 lipidation is common to multiple autophagic cargo receptors, yet the details of core complex engagement vary between the different receptors.


Asunto(s)
Autofagosomas , Proteínas Asociadas a Microtúbulos , Animales , Autofagosomas/metabolismo , Autofagia , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Mamíferos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
6.
Elife ; 92020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32773036

RESUMEN

The selective autophagy pathways of xenophagy and mitophagy are initiated when the adaptor NDP52 recruits the ULK1 complex to autophagic cargo. Hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) was used to map the membrane and NDP52 binding sites of the ULK1 complex to unique regions of the coiled coil of the FIP200 subunit. Electron microscopy of the full-length ULK1 complex shows that the FIP200 coiled coil projects away from the crescent-shaped FIP200 N-terminal domain dimer. NDP52 allosterically stimulates membrane-binding by FIP200 and the ULK1 complex by promoting a more dynamic conformation of the membrane-binding portion of the FIP200 coiled coil. Giant unilamellar vesicle (GUV) reconstitution confirmed that membrane recruitment by the ULK1 complex is triggered by NDP52 engagement. These data reveal how the allosteric linkage between NDP52 and the ULK1 complex could drive the first membrane recruitment event of phagophore biogenesis in xenophagy and mitophagy.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Membrana Celular/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Regulación Alostérica , Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo
7.
J Cell Biol ; 219(7)2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32516362

RESUMEN

The autophagy-initiating human ULK complex consists of the kinase ULK1/2, FIP200, ATG13, and ATG101. Hydrogen-deuterium exchange mass spectrometry was used to map their mutual interactions. The N-terminal 640 residues (NTD) of FIP200 interact with the C-terminal IDR of ATG13. Mutations in these regions abolish their interaction. Negative stain EM and multiangle light scattering showed that FIP200 is a dimer, while a single molecule each of the other subunits is present. The FIP200NTD is flexible in the absence of ATG13, but in its presence adopts the shape of the letter C ∼20 nm across. The ULK1 EAT domain interacts loosely with the NTD dimer, while the ATG13:ATG101 HORMA dimer does not contact the NTD. Cryo-EM of the NTD dimer revealed a structural similarity to the scaffold domain of TBK1, suggesting an evolutionary similarity between the autophagy-initiating TBK1 kinase and the ULK1 kinase complex.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/química , Proteínas Relacionadas con la Autofagia/química , Autofagia/genética , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Serina-Treonina Quinasas/química , Proteínas de Transporte Vesicular/química , Secuencia de Aminoácidos , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Sitios de Unión , Clonación Molecular , Microscopía por Crioelectrón , Medición de Intercambio de Deuterio , Expresión Génica , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
8.
Nat Struct Mol Biol ; 27(6): 570-580, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32424346

RESUMEN

The ESCRT complexes drive membrane scission in HIV-1 release, autophagosome closure, multivesicular body biogenesis, cytokinesis, and other cell processes. ESCRT-I is the most upstream complex and bridges the system to HIV-1 Gag in virus release. The crystal structure of the headpiece of human ESCRT-I comprising TSG101-VPS28-VPS37B-MVB12A was determined, revealing an ESCRT-I helical assembly with a 12-molecule repeat. Electron microscopy confirmed that ESCRT-I subcomplexes form helical filaments in solution. Mutation of VPS28 helical interface residues blocks filament formation in vitro and autophagosome closure and HIV-1 release in human cells. Coarse-grained (CG) simulations of ESCRT assembly at HIV-1 budding sites suggest that formation of a 12-membered ring of ESCRT-I molecules is a geometry-dependent checkpoint during late stages of Gag assembly and HIV-1 budding and templates ESCRT-III assembly for membrane scission. These data show that ESCRT-I is not merely a bridging adaptor; it has an essential scaffolding and mechanical role in its own right.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , VIH-1/fisiología , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencias de Aminoácidos , Autofagosomas , Membrana Celular/metabolismo , Cristalización , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HEK293/virología , VIH-1/metabolismo , Interacciones Huésped-Patógeno/fisiología , Humanos , Simulación de Dinámica Molecular , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Conformación Proteica , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Liberación del Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
9.
Science ; 366(6468): 971-977, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31672913

RESUMEN

The tumor suppressor folliculin (FLCN) enables nutrient-dependent activation of the mechanistic target of rapamycin complex 1 (mTORC1) protein kinase via its guanosine triphosphatase (GTPase) activating protein (GAP) activity toward the GTPase RagC. Concomitant with mTORC1 inactivation by starvation, FLCN relocalizes from the cytosol to lysosomes. To determine the lysosomal function of FLCN, we reconstituted the human lysosomal FLCN complex (LFC) containing FLCN, its partner FLCN-interacting protein 2 (FNIP2), and the RagAGDP:RagCGTP GTPases as they exist in the starved state with their lysosomal anchor Ragulator complex and determined its cryo-electron microscopy structure to 3.6 angstroms. The RagC-GAP activity of FLCN was inhibited within the LFC, owing to displacement of a catalytically required arginine in FLCN from the RagC nucleotide. Disassembly of the LFC and release of the RagC-GAP activity of FLCN enabled mTORC1-dependent regulation of the master regulator of lysosomal biogenesis, transcription factor E3, implicating the LFC as a checkpoint in mTORC1 signaling.


Asunto(s)
Lisosomas/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Microscopía por Crioelectrón , Citoplasma/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Guanosina Difosfato/metabolismo , Humanos , Lisosomas/química , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/química , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína , Transducción de Señal
10.
Elife ; 82019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31566566

RESUMEN

Soluble guanylate cyclase (sGC) is the primary receptor for nitric oxide (NO) in mammalian nitric oxide signaling. We determined structures of full-length Manduca sexta sGC in both inactive and active states using cryo-electron microscopy. NO and the sGC-specific stimulator YC-1 induce a 71° rotation of the heme-binding ß H-NOX and PAS domains. Repositioning of the ß H-NOX domain leads to a straightening of the coiled-coil domains, which, in turn, use the motion to move the catalytic domains into an active conformation. YC-1 binds directly between the ß H-NOX domain and the two CC domains. The structural elongation of the particle observed in cryo-EM was corroborated in solution using small angle X-ray scattering (SAXS). These structures delineate the endpoints of the allosteric transition responsible for the major cyclic GMP-dependent physiological effects of NO.


Asunto(s)
Microscopía por Crioelectrón , Manduca/enzimología , Guanilil Ciclasa Soluble/ultraestructura , Regulación Alostérica , Animales , Indazoles/metabolismo , Óxido Nítrico/metabolismo , Conformación Proteica
11.
Cell Rep ; 28(8): 2080-2095.e6, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31433984

RESUMEN

Hsp104 is an AAA+ protein disaggregase, which can be potentiated via diverse mutations in its autoregulatory middle domain (MD) to mitigate toxic misfolding of TDP-43, FUS, and α-synuclein implicated in fatal neurodegenerative disorders. Problematically, potentiated MD variants can exhibit off-target toxicity. Here, we mine disaggregase sequence space to safely enhance Hsp104 activity via single mutations in nucleotide-binding domain 1 (NBD1) or NBD2. Like MD variants, NBD variants counter TDP-43, FUS, and α-synuclein toxicity and exhibit elevated ATPase and disaggregase activity. Unlike MD variants, non-toxic NBD1 and NBD2 variants emerge that rescue TDP-43, FUS, and α-synuclein toxicity. Potentiating substitutions alter NBD1 residues that contact ATP, ATP-binding residues, or the MD. Mutating the NBD2 protomer interface can also safely ameliorate Hsp104. Thus, we disambiguate allosteric regulation of Hsp104 by several tunable structural contacts, which can be engineered to spawn enhanced therapeutic disaggregases with minimal off-target toxicity.


Asunto(s)
Proteínas de Unión al ADN/toxicidad , Proteínas de Choque Térmico/metabolismo , Proteína FUS de Unión a ARN/toxicidad , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/toxicidad , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Ácido Azetidinocarboxílico/farmacología , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas Mutantes/metabolismo , Mutación Missense/genética , Agregado de Proteínas , Dominios Proteicos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
12.
Cell Chem Biol ; 26(7): 960-969.e4, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31056463

RESUMEN

Allosteric regulation of methylmalonyl-CoA mutase (MCM) by the G-protein chaperone CblA is transduced via three "switch" elements that gate the movement of the B12 cofactor to and from MCM. Mutations in CblA and MCM cause hereditary methylmalonic aciduria. Unlike the bacterial orthologs used previously to model disease-causing mutations, human MCM and CblA exhibit a complex pattern of regulation that involves interconverting oligomers, which are differentially sensitive to the presence of GTP versus GDP. Patient mutations in the switch III region of CblA perturb the nucleotide-sensitive distribution of the oligomeric complexes with MCM, leading to loss of regulated movement of B12 to and/or from MCM and explain the molecular mechanism of the resulting disease.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Metilmalonil-CoA Mutasa/metabolismo , Regulación Alostérica/fisiología , Errores Innatos del Metabolismo de los Aminoácidos/genética , Fibroblastos/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Chaperonas Moleculares , Mutación , Transporte de Proteínas , Vitamina B 12
13.
J Biol Chem ; 293(20): 7727-7736, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29618513

RESUMEN

The cytochrome P450 enzyme CYP102A1 from Bacillus megaterium is a highly efficient hydroxylase of fatty acids, and there is a significant interest in using CYP102A1 for biotechnological applications. Here, we used size-exclusion chromatography-multiangle light scattering (SEC-MALS) analysis and negative-stain EM to investigate the molecular architecture of CYP102A1. The SEC-MALS analysis yielded a homogeneous peak with an average molecular mass of 235 ± 5 kDa, consistent with homodimeric CYP102A1. The negative-stain EM of dimeric CYP102A1 revealed four distinct lobes, representing the two heme and two reductase domains. Two of the lobes were in close contact, whereas the other two were often observed apart and at the ends of a U-shaped configuration. The overall dimension of the dimer was ∼130 Å. To determine the identity of the lobes, we FLAG-tagged the N or C terminus of CYP102A1 to visualize additional densities in EM and found that anti-FLAG Fab could bind only the N-tagged P450. Single-particle analysis of this anti-Flag Fab-CYP102A1 complex revealed additional density in the N-terminally tagged heme domains, indicating that the heme domains appear flexible, whereas the reductase domains remain tightly associated. The effects of truncation on CYP102A1 dimerization, identification of cross-linked sites by peptide mapping, and molecular modeling results all were consistent with the dimerization of the reductase domain. We conclude that functional CYP102A1 is a compact globular protein dimerized at its reductase domains, with its heme domains exhibiting multiple conformations that likely contribute to the highly efficient catalysis of CYP102A1.


Asunto(s)
Bacillus megaterium/enzimología , Proteínas Bacterianas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Hemo/metabolismo , NADPH-Ferrihemoproteína Reductasa/metabolismo , Oxidorreductasas/metabolismo , Multimerización de Proteína , Proteínas Bacterianas/química , Catálisis , Cristalografía por Rayos X , Sistema Enzimático del Citocromo P-450/química , Transporte de Electrón , Hemo/química , Modelos Moleculares , Simulación de Dinámica Molecular , NADPH-Ferrihemoproteína Reductasa/química , Oxidorreductasas/química , Conformación Proteica
14.
J Biol Chem ; 292(43): 17617-17625, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-28882898

RESUMEN

G-proteins regulate various processes ranging from DNA replication and protein synthesis to cytoskeletal dynamics and cofactor assimilation and serve as models for uncovering strategies deployed for allosteric signal transduction. MeaB is a multifunctional G-protein chaperone, which gates loading of the active 5'-deoxyadenosylcobalamin cofactor onto methylmalonyl-CoA mutase (MCM) and precludes loading of inactive cofactor forms. MeaB also safeguards MCM, which uses radical chemistry, against inactivation and rescues MCM inactivated during catalytic turnover by using the GTP-binding energy to offload inactive cofactor. The conserved switch I and II signaling motifs used by G-proteins are predicted to mediate allosteric regulation in response to nucleotide binding and hydrolysis in MeaB. Herein, we targeted conserved residues in the MeaB switch I motif to interrogate the function of this loop. Unexpectedly, the switch I mutations had only modest effects on GTP binding and on GTPase activity and did not perturb stability of the MCM-MeaB complex. However, these mutations disrupted multiple MeaB chaperone functions, including cofactor editing, loading, and offloading. Hence, although residues in the switch I motif are not essential for catalysis, they are important for allosteric regulation. Furthermore, single-particle EM analysis revealed, for the first time, the overall architecture of the MCM-MeaB complex, which exhibits a 2:1 stoichiometry. These EM studies also demonstrate that the complex exhibits considerable conformational flexibility. In conclusion, the switch I element does not significantly stabilize the MCM-MeaB complex or influence the affinity of MeaB for GTP but is required for transducing signals between MeaB and MCM.


Asunto(s)
Proteínas Bacterianas/química , Cobamidas/química , Metilmalonil-CoA Mutasa/química , Methylobacterium extorquens/química , Chaperonas Moleculares/química , Complejos Multiproteicos/química , Transducción de Señal/fisiología , Factores de Transcripción/química , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cobamidas/genética , Cobamidas/metabolismo , Metilmalonil-CoA Mutasa/genética , Metilmalonil-CoA Mutasa/metabolismo , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Estabilidad Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Science ; 357(6348): 273-279, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28619716

RESUMEN

Hsp100 polypeptide translocases are conserved members of the AAA+ family (adenosine triphosphatases associated with diverse cellular activities) that maintain proteostasis by unfolding aberrant and toxic proteins for refolding or proteolytic degradation. The Hsp104 disaggregase from Saccharomyces cerevisiae solubilizes stress-induced amorphous aggregates and amyloids. The structural basis for substrate recognition and translocation is unknown. Using a model substrate (casein), we report cryo-electron microscopy structures at near-atomic resolution of Hsp104 in different translocation states. Substrate interactions are mediated by conserved, pore-loop tyrosines that contact an 80-angstrom-long unfolded polypeptide along the axial channel. Two protomers undergo a ratchet-like conformational change that advances pore loop-substrate interactions by two amino acids. These changes are coupled to activation of specific nucleotide hydrolysis sites and, when transmitted around the hexamer, reveal a processive rotary translocation mechanism and substrate-responsive flexibility during Hsp104-catalyzed disaggregation.


Asunto(s)
Proteínas de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Caseínas/metabolismo , Microscopía por Crioelectrón , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/ultraestructura , Hidrólisis , Nucleótidos/química , Nucleótidos/metabolismo , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Regiones Promotoras Genéticas , Dominios Proteicos , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Especificidad por Sustrato , Tirosina/genética , Tirosina/metabolismo
16.
Nat Struct Mol Biol ; 23(9): 830-7, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27478928

RESUMEN

Hsp104, a conserved AAA+ protein disaggregase, promotes survival during cellular stress. Hsp104 remodels amyloids, thereby supporting prion propagation, and disassembles toxic oligomers associated with neurodegenerative diseases. However, a definitive structural mechanism for its disaggregase activity has remained elusive. We determined the cryo-EM structure of wild-type Saccharomyces cerevisiae Hsp104 in the ATP state, revealing a near-helical hexamer architecture that coordinates the mechanical power of the 12 AAA+ domains for disaggregation. An unprecedented heteromeric AAA+ interaction defines an asymmetric seam in an apparent catalytic arrangement that aligns the domains in a two-turn spiral. N-terminal domains form a broad channel entrance for substrate engagement and Hsp70 interaction. Middle-domain helices bridge adjacent protomers across the nucleotide pocket, thus explaining roles in ATP hydrolysis and protein disaggregation. Remarkably, substrate-binding pore loops line the channel in a spiral arrangement optimized for substrate transfer across the AAA+ domains, thereby establishing a continuous path for polypeptide translocation.


Asunto(s)
Proteínas de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfato/química , Dominio Catalítico , Microscopía por Crioelectrón , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/enzimología
17.
Data Brief ; 4: 650-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26401521

RESUMEN

The data here consists of time-dependent experimental parameters from chemical and biophysical methods used to characterize Aß monomeric reactants as well as soluble oligomer and amyloid fibril products from a slow (3-4 week) assembly reaction under biologically-relevant solvent conditions. The data of this reaction are both of a qualitative and quantitative nature, including gel images from chemical cross-linking and Western blots, fractional solubility, thioflavin T binding, size exclusion chromatograms, transmission electron microscopy images, circular dichroism spectra, and fluorescence resonance energy transfer efficiencies of donor-acceptor pair labels in the Aß chain. This data enables future efforts to produce the initial monomer and eventual soluble oligomer and amyloid fibril states by providing reference benchmarks of these states pertaining to physical properties (solubility), ligand-binding (thioflavin T binding), mesoscopic structure (electron microscopy, size exclusion chromatography, cross-linking products, SDS and native gels) and molecular structure (circular dichroism, FRET donor-acceptor distance). Aß1-40 soluble oligomers are produced that are suitable for biophysical studies requiring sufficient transient stability to exist in their "native" conformation in biological phosphate-saline buffers for extended periods of time. The production involves an initial preparation of highly monomeric Aß in a phosphate saline buffer that transitions to fibrils and oligomers through time incubation alone, without added detergents or non-aqueous chemicals. This criteria ensures that the only difference between initial monomeric Aß reactant and subsequent Aß oligomer products is their degree of peptide assembly. A number of chemical and biophysical methods were used to characterize the monomeric reactants and soluble oligomer and amyloid fibril products, including chemical cross-linking, Western blots, fraction solubility, thioflvain T binding, size exclusion chromatography, transmission electron micrscopy, circular dichroism spectroscopy, and fluorescence resonance energy transfer.

18.
Anal Biochem ; 481: 43-54, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25921794

RESUMEN

Surface plasmon resonance was used to investigate the kinetics, affinity, and specificity of binding between anti-Aß (beta-amyloid) IgG antibodies and oligomeric Aß. Two factors were needed to accurately characterize the IgG binding kinetics. First, a bivalent model was necessary to properly fit the kinetic association and dissociation sensograms. Second, a high concentration of IgG was necessary to overcome a significant mass transport limitation that existed regardless of oligomer density on the sensor surface. Using high IgG concentrations and bivalent fits, consistent kinetic parameters were found at varying sensor surface ligand densities. A comparison of binding specificity, affinity, and kinetic flux between monoclonal and natural human anti-Aß IgG antibodies revealed the following findings. First, monoclonal antibodies 6E10 and 4G8 single-site binding affinity is similar between Aß oligomers and monomers. Second, natural human anti-Aß IgG binding readily binds Aß oligomers but does not bind monomers. Third, natural human anti-Aß IgG binds Aß oligomers with a higher affinity and kinetic flux than 6E10 and 4G8. Both the current analytical methodology and antibody binding profiles are important for advances in antibody drug development and kinetic biomarker applications for Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/inmunología , Inmunoglobulina G/inmunología , Péptidos beta-Amiloides/química , Afinidad de Anticuerpos , Humanos , Cinética , Solubilidad , Resonancia por Plasmón de Superficie
19.
J Biol Chem ; 289(24): 16855-65, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24737326

RESUMEN

Nitric-oxide synthase (NOS) is required in mammals to generate NO for regulating blood pressure, synaptic response, and immune defense. NOS is a large homodimer with well characterized reductase and oxygenase domains that coordinate a multistep, interdomain electron transfer mechanism to oxidize l-arginine and generate NO. Ca(2+)-calmodulin (CaM) binds between the reductase and oxygenase domains to activate NO synthesis. Although NOS has long been proposed to adopt distinct conformations that alternate between interflavin and FMN-heme electron transfer steps, structures of the holoenzyme have remained elusive and the CaM-bound arrangement is unknown. Here we have applied single particle electron microscopy (EM) methods to characterize the full-length of the neuronal isoform (nNOS) complex and determine the structural mechanism of CaM activation. We have identified that nNOS adopts an ensemble of open and closed conformational states and that CaM binding induces a dramatic rearrangement of the reductase domain. Our three-dimensional reconstruction of the intact nNOS-CaM complex reveals a closed conformation and a cross-monomer arrangement with the FMN domain rotated away from the NADPH-FAD center, toward the oxygenase dimer. This work captures, for the first time, the reductase-oxygenase structural arrangement and the CaM-dependent release of the FMN domain that coordinates to drive electron transfer across the domains during catalysis.


Asunto(s)
Calmodulina/metabolismo , Dominio Catalítico , Óxido Nítrico Sintasa de Tipo I/química , Secuencia de Aminoácidos , Animales , Calmodulina/química , Holoenzimas/química , Holoenzimas/metabolismo , Datos de Secuencia Molecular , Óxido Nítrico Sintasa de Tipo I/metabolismo , Unión Proteica , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA