Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Radioact ; 186: 34-44, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29029765

RESUMEN

Dynamics of the Fukushima-derived radiocesium and distribution of the natural stable isotope 133Cs in Japanese cedar (Cryptomeria japonica D. Don) forest ecosystems were studied during 2014-2016. For the experimental site in Yamakiya, Fukushima Prefecture, we present the redistribution of radiocesium among ecosystem compartments during the entire observation period, while the results obtained at another two experimental site were used to demonstrate similarity of the main trends in the Japanese forest ecosystems. Our observations at the Yamakiya site revealed significant redistribution of radiocesium between the ecosystem compartments during 2014-2016. During this same period radionuclide inventories in the aboveground tree biomass were relatively stable, however, radiocesium in forest litter decreased from 20 ± 11% of the total deposition in 2014 to 4.6 ± 2.7% in 2016. Radiocesium in the soil profile accumulated in the 5-cm topsoil layers. In 2016, more than 80% of the total radionuclide deposition in the ecosystem resided in the 5-cm topsoil layer. The radiocesium distribution between the aboveground biomass compartments at Yamakiya during 2014-2016 was gradually approaching a quasi-equilibrium distribution with stable cesium. Strong correlations of radioactive and stable cesium isotope concentrations in all compartments of the ecosystem have not been reached yet. However, in some compartments the correlation is already strong. An increase of radiocesium concentrations in young foliage in 2016, compared to 2015, and an increase in 2015-2016 of the 137Cs/133Cs concentration ratio in the biomass compartments with strong correlations indicate an increase in root uptake of radiocesium from the soil profile. Mass balance of the radionuclide inventories, and accounting for radiocesium fluxes in litterfall, throughfall and stemflow, enabled a rough estimate of the annual radiocesium root uptake flux as 2 ± 1% of the total inventory in the ecosystem.


Asunto(s)
Isótopos de Cesio/análisis , Radioisótopos de Cesio/análisis , Bosques , Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo/análisis , Cryptomeria , Japón , Radiactividad
2.
Anal Sci ; 32(6): 623-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27302582

RESUMEN

The rate of the complexation reaction between anionic porphyrins and 11 metal ions was found to be accelerated by the presence of ß-cyclodextrin (ß-CD) in aqueous media at room temperature without the need for additional heating or sonication. The porphyrin complexation reaction with metal ions under aqueous conditions can be difficult due to the strong hydration energy between the metal ions and water. In this study, the specific role of ß-CD as an accelerator was determined and found to enhance the typically slow reaction of the porphyrin with metal ions. A significant acceleration effect was exhibited when the model anionic porphyrin, 5,10,15,20-tetraphenyl-21H,23H-porphine-tetrasulfonic acid, and Pb(II) ions were combined in the presence of ß-CD. Other than for Hg ion, the addition of ß-CD decreased the metalation reaction time from 30 to 2 min. The order in the degree of acceleration was Pb >> Zn, Cd > Cu > Fe, Pd > Sn >> Ag, Co, Mn. Using Pb(II) as the model ion, it was determined that the complexation rate constant was enhanced by a factor of 2.4, while the dissociation rate constant was diminished by a factor of 135 in the presence of added ß-CD relative to that in its absence. Overall, the complex was much more stable (formation equilibrium constant 324-fold greater in the ß-CD medium. The formation of a ternary complex (cf. bicapped complex; (ß-CD)2-porphyrin-metal ion) was demonstrated through the use of nuclear magnetic-resonance spectroscopy and mass spectrometry. This acceleration effect is expected to be applicable systems in which porphyrin ligands are employed for determining of metal ions in chemical analysis and separation science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...