Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2203541, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36382556

RESUMEN

K2 NiF4 -type Ba-Li oxyhydride (BLHO) transitions to a so-called hydride superionic conductor, exhibiting a high and essentially temperature-independent hydride ion (H- ) conductivity over 0.01 S cm-1 through the disordering of H- vacancies above 300 °C. In this study, a Ba-Li-Na-H-O oxyhydride system synthesized in which lithium is partially substituted with sodium in BLHO and investigated the effects of Na content on the phase transition behavior and the conductivity. Structural refinements and differential scanning calorimetry experiments confirmed a lowering trend in the phase transition temperatures and decreasing enthalpy changes for the transition with increasing Na content. Substitution of not <40% of Li with Na lowered the degree of ordered vacancies at the H- sites at room temperature and improved conductivities by more than two orders of magnitude in the low-temperature region (T < 300 °C) before the phase transition. These findings clearly show that introducing Na into the lattice effectively stabilizes the high-conductive phase of BLHO.

2.
ACS Cent Sci ; 8(6): 775-794, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35756387

RESUMEN

Dependence on lithium-ion batteries for automobile applications is rapidly increasing. The emerging use of anionic redox can boost the energy density of batteries, but the fundamental origin of anionic redox is still under debate. Moreover, to realize anionic redox, many reported electrode materials rely on manganese ions through π-type interactions with oxygen. Here, through a systematic experimental and theoretical study on a binary system of Li3NbO4-NiO, we demonstrate for the first time the unexpectedly large contribution of oxygen to charge compensation for electrochemical oxidation in Ni-based materials. In general, for Ni-based materials, e.g., LiNiO2, charge compensation is achieved mainly by Ni oxidation, with a lower contribution from oxygen. In contrast, for Li3NbO4-NiO, oxygen-based charge compensation is triggered by structural disordering and σ-type interactions with nickel ions, which are associated with a unique environment for oxygen, i.e., a linear Ni-O-Ni configuration in the disordered system. Reversible anionic redox with a small hysteretic behavior was achieved for LiNi2/3Nb1/3O2 with a cation-disordered Li/Ni arrangement. Further Li enrichment in the structure destabilizes anionic redox and leads to irreversible oxygen loss due to the disappearance of the linear Ni-O-Ni configuration and the formation of unstable Ni ions with high oxidation states. On the basis of these results, we discuss the possibility of using σ-type interactions for anionic redox to design advanced electrode materials for high-energy lithium-ion batteries.

3.
J Am Chem Soc ; 144(11): 4989-4994, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35138083

RESUMEN

Solid-state electrolytes that exhibit high ionic conductivities at room temperature are key materials for obtaining the next generation of safer, higher-specific-energy solid-state batteries. However, the number of currently available crystal structures for use as superionic conductors remains limited. Here, we report a lithium superionic conductor, Li2SiS3, with tetragonal crystal symmetry, which possesses a new three-dimensional framework structure consisting of isolated edge-sharing tetrahedral dimers. This species exhibits an anomalously high ionic conductivity of 2.4 mS cm-1 at 298 K, which is 3 orders of magnitude higher than the reported ionic conductivity for its orthorhombic polymorph. The framework of this conductor consists mainly of silicon, which is abundant in natural resources, and its further optimization may lead to the development of new solid-state electrolytes for large-scale applications.

4.
Nat Mater ; 21(3): 325-330, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35027719

RESUMEN

Hydrogen transport in solids, applied in electrochemical devices such as fuel cells and electrolysis cells, is key to sustainable energy societies. Although using proton (H+) conductors is an attractive choice, practical conductivity at intermediate temperatures (200-400 °C), which would be ideal for most energy and chemical conversion applications, remains a challenge. Alternatively, hydride ions (H-), that is, monovalent anions with high polarizability, can be considered a promising charge carrier that facilitates fast ionic conduction in solids. Here, we report a K2NiF4-type Ba-Li oxyhydride with an appreciable amount of hydrogen vacancies that presents long-range order at room temperature. Increasing the temperature results in the disappearance of the vacancy ordering, triggering a high and essentially temperature-independent H- conductivity of more than 0.01 S cm-1 above 315 °C. Such a remarkable H- conducting nature at intermediate temperatures is anticipated to be important for energy and chemical conversion devices.


Asunto(s)
Electrólitos , Protones , Conductividad Eléctrica , Transporte Iónico , Iones
5.
Inorg Chem ; 61(1): 52-61, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34914367

RESUMEN

Understanding the fast Li ionic conductors of oxygen-substituted thiophosphates is useful for developing all-solid-state batteries because these compounds possess a high electrochemical stability and thus may be applied as solid electrolytes. In this study, we synthesized the Li9+δP3+δ'S12-kOk series of solid solution phases with the same structure as the Li10GeP2S12 superionic conductor and characterized their crystallinity, solid solution range, and chemical stabilities. Two methods (mechanochemical and melt quenching) were used for sample synthesis. Mechanochemical synthesis was used to obtain samples within a wide range of sulfur/oxygen substitution degrees, and the solid solution range was determined to be 0 < k ≤ 3.6 based on their lattice parameter variation. Meanwhile, the melt-quenched Li9P3S9O3 phase exhibited a high degree of crystallinity up to its particle surface and was thus selected for neutron crystal structure analysis, which revealed the oxygen distribution related to the solubility limit. The highly crystalline melt-quenched Li9P3S9O3 showed better stability in the air atmosphere compared to the mechanochemically synthesized counterpart with a low crystallinity, implying that sample crystallinity is an important parameter in evaluating the air stability of thiophosphates. The promising electrochemical properties of the solid solution series were demonstrated by the stable charge-discharge cycling of an all-solid-state lithium metal cell using the Li9+δP3+δ'S12-kOk electrolyte with k = 0.9 and a conductivity of >1 × 10-3 S cm-1 at 300 K.

6.
Chem Commun (Camb) ; 56(71): 10373-10376, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32766634

RESUMEN

A new layered perovskite oxyhydride Ba2YHO3 was synthesized via high pressure synthesis. Powder X-ray and neutron diffraction experiments revealed that in Ba2YHO3 the ordered H- and O2- anions form [Ba2H2] rock-salt layers wherein H- conduction is allowed. The conductivity reached 0.1 mS cm-1 at 350 °C, which is higher than that of isostructural Ba2ScHO3 with anion-disordered [Ba2HO] layers.

7.
J Phys Chem Lett ; 11(16): 6785-6790, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32701301

RESUMEN

Zero thermal expansion (ZTE) materials are highly desired in modern industries where high-precision processing is necessary. However, ZTE materials in pure form are extremely rare. The most widely used are Invar alloys, where the ZTE is intimately associated with spontaneous magnetic ordering, known as the magnetovolume effect (MVE). Despite tremendous studies, there is still no consensus on the microscopic origin of MVE in Invar alloys. Here, we report the discovery of room-temperature isotropic ZTE in a pure-form cobaltite perovskite, A-site disordered La0.5Ba0.5CoO3-x. The temperature window of the anomalous thermal expansion shows large tunability by simply altering the oxygen content, making this material a promising candidate for practical applications. Furthermore, we unveil with compelling experimental evidence that the ZTE originates from an isostructural transition between antiferromagnetic large-volume phase and ferromagnetic small-volume phase, which might shed light on the MVE in Invar alloys.

8.
RSC Adv ; 10(13): 7803-7811, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35492171

RESUMEN

A fast proton conductor was investigated in a mixed-valence system of phosphates with a combination of large cations (K+) and small cations (Mg2+), which resulted in a new phase with a tunnel structure suitable for proton conduction. KMg1-x H2x (PO3)3·yH2O was synthesized by a coprecipitation method. A solid solution formed in the range of x = 0-0.18 in KMg1-x H2x (PO3)3·yH2O. The structure of the new proton conductor was determined using neutron and X-ray diffraction measurements. KMg1-x H2x (PO3)3·yH2O has a tunnel framework composed of face-shared (KO6) and (MgO6) chains, and PO4 tetrahedral chains along the c-direction by corner-sharing. Two oxygen sites of water molecules were detected in the one-dimensional tunnel, one of which exists as a coordination water of K+ sites. Multi-step dehydration was observed at 30 °C and 150 °C from thermogravimetric/differential thermal analysis measurements, which reflects the different coordination environments of the water of crystallization. Water molecules are connected to PO4 tetrahedra by hydrogen bonds and form a chain along the c-axis in the tunnel, which would provide an environment for fast proton conduction associated with water molecules. The KMg1-x H2x (PO3)3·yH2O sample with x = 0.18 exhibited high proton conductivity of 4.5 × 10-3 S cm-1 at 150 °C and 7.0 × 10-3 S cm-1 at 200 °C in a dry Ar gas flow and maintained the total conductivity above 10-3 S cm-1 for 60 h at 150 °C under N2 gas atmosphere.

9.
J Am Chem Soc ; 141(22): 8717-8720, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31099572

RESUMEN

Two novel high-pressure polymorphs of lanthanum oxyhydride have been successfully predicted and stabilized under pressure. When reacted at 3 GPa, the fluorite structure of LaHO with anion-centered tetrahedral (HLa4/OLa4) geometry is transformed to the PbCl2-type structure involving coordination number increase of H- to five (HLa5 square pyramids). Upon further application of pressure to 5 GPa, LaHO changed into the anti Fe2P-type structure. Interestingly, the 5 GPa phase contains tetrahedral HLa4 and square-pyramidal OLa5 geometry, meaning coordination switching, as confirmed by ab initio calculations. The structural analysis shows that this unprecedented phenomenon is enabled by higher compressibility of hydride anion and emphasizes its potential in the search for new high-pressure forms of hydride-based mixed anion materials.

10.
Inorg Chem ; 58(7): 4431-4436, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30784265

RESUMEN

Hydride (H-) conduction is a new frontier related to hydrogen transport in solids. Here, a new H- conductive oxyhydride Ba2ScHO3 was successfully synthesized using a high-pressure technique. Powder X-ray and neutron diffraction experiments investigated the fact that Ba2ScHO3 adopts a K2NiF4-type structure with H- ions preferentially occupying the apical sites, as supported by theoretical calculations. Electrochemical impedance spectra showed that Ba2ScHO3 exhibited H- conduction and a conductivity of 5.2 × 10-6 S cm-1 at 300 °C. This value is much higher than that of BaScO2H, which has an ideal perovskite structure, suggesting the advantage of layered structures for H- conduction. Tuning site selectivity of H- ions in layered oxyhydrides might be a promising strategy for designing fast H- conductors applicable for novel electrochemical devices.

11.
Inorg Chem ; 57(24): 15462-15473, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30507117

RESUMEN

A polar LiNbO3 (LN)-type oxide LiSbO3 was synthesized by a high-temperature heat treatment under a pressure of 7.7 GPa and found to exhibit ferroelectricity. The crystal structural refinement using the data of synchrotron powder X-ray diffraction and neutron diffraction and the electronic structure calculation of LN-type LiSbO3 suggest a covalent-bonding character between Sb and O. When comparing the distortion of BO6 in LN-type ABO3, the distortions of SbO6 in LiSbO3 and SnO6 in ZnSnO3, which included a B cation with a d10 electronic configuration, were smaller than those of BO6 in LN-type oxides having the second-order Jahn-Teller active B cation, e.g., LiNbO3 and ZnTiO3. The temperature dependence of the lattice parameters, second harmonic generation, dielectric permittivity, and differential scanning calorimetry made it clear that a second-order ferroelectric-paraelectric phase transition occurs at a Curie temperature of Tc = 605 ± 10 K in LN-type LiSbO3. Further, first-principles density functional theory calculation suggested that perovskite-type LiSbO3 is less stable than LN-type LiSbO3 under even high pressure, and the ambient phase of LiSbO3 directly transforms to LN-type LiSbO3 under high pressure. The phase stability of LN-type LiSbO3 and the polar and ferroelectric properties are rationalized by the covalent bonding of Sb-O and the relatively weak Coulomb repulsion between Li+ and Sb5+.

13.
Adv Mater ; 29(27)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28480977

RESUMEN

Materials that show negative thermal expansion (NTE) have significant industrial merit because they can be used to fabricate composites whose dimensions remain invariant upon heating. In some materials, NTE is concomitant with the spontaneous magnetization due to the magnetovolume effect (MVE). Here the authors report a new class of MVE material; namely, a layered perovskite PrBaCo2 O5.5+x (0 ≤ x ≤ 0.41), in which strong NTE [ß ≈ -3.6 × 10-5 K-1 (90-110 K) at x = 0.24] is triggered by embedding ferromagnetic (F) clusters into the antiferromagnetic (AF) matrix. The strongest MVE is found near the boundary between F and AF phases in the phase diagram, indicating the essential role of competition between the F-clusters and the AF-matrix. Furthermore, the MVE is not limited to the PrBaCo2 O5.5+x but is also observed in the NdBaCo2 O5.5+x . The present study provides a new approach to obtaining MVE and offers a path to the design of NTE materials.

14.
Nat Commun ; 7: 13814, 2016 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-28008955

RESUMEN

Further increase in energy density of lithium batteries is needed for zero emission vehicles. However, energy density is restricted by unavoidable theoretical limits for positive electrodes used in commercial applications. One possibility towards energy densities exceeding these limits is to utilize anion (oxide ion) redox, instead of classical transition metal redox. Nevertheless, origin of activation of the oxide ion and its stabilization mechanism are not fully understood. Here we demonstrate that the suppression of formation of superoxide-like species on lithium extraction results in reversible redox for oxide ions, which is stabilized by the presence of relatively less covalent character of Mn4+ with oxide ions without the sacrifice of electronic conductivity. On the basis of these findings, we report an electrode material, whose metallic constituents consist only of 3d transition metal elements. The material delivers a reversible capacity of 300 mAh g-1 based on solid-state redox reaction of oxide ions.

15.
Sci Rep ; 6: 28843, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27357605

RESUMEN

Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries.

16.
J Phys Chem Lett ; 7(11): 2063-7, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27195427

RESUMEN

We examined the crystal structures of Li2(NixMn1-x)O3(-δ) (x = 0, 1/10, 1/6, and 1/4) to elucidate the relationship between the structure and electrochemical performance of the compounds using neutron and synchrotron X-ray powder diffraction analyses in combination. Our examination revealed that these crystals contain a large number of stacking faults and exhibit significant cation mixing in the transition-metal layers; the cation mixing becomes significant with an increase in the Ni concentration. Charge-discharge measurements showed that the replacement of Mn with Ni lowers the potential of the charge plateau and leads to higher charge-discharge capacities. From a topological point of view with regard to the atomic arrangement in the crystals, it is concluded that substituting Mn in Li2MnO3 with Ni promotes the formation of smooth Li percolation paths, thus increasing the number of active Li ions and improving the charge-discharge capacity.

17.
Science ; 351(6279): 1314-7, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26989251

RESUMEN

A variety of proton (H(+))-conducting oxides are known, including those used in electrochemical devices such as fuel cells. In contrast, pure H(-) conduction, not mixed with electron conduction, has not been demonstrated for oxide-based materials. Considering that hydride ions have an ionic size appropriate for fast transport and also a strong reducing ability suitable for high-energy storage and conversion devices, we prepared a series of K2NiF4-type oxyhydrides, La(2-x-y)Sr(x + y)LiH(1-x + y)O(3-y), in the hope of observing such H(-) conductors. The performance of an all-solid-state TiH2/o-La2LiHO3 (x = y = 0, o: orthorhombic)/Ti cell provided conclusive evidence of pure H(-) conduction.

18.
Faraday Discuss ; 176: 83-94, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25627323

RESUMEN

Solid solutions of the silicon and tin analogous phases of the superionic conductor Li(10)MP(2)S(12) (M = Si, Sn) were synthesized by a conventional solid-state reaction in an evacuated silica tube at 823 K. The ranges of the solid solutions were determined to be 0.20 < δ < 0.43 and -0.25 < δ < -0.01 in Li(10+δ)M(1+δ)P(2-δ)S(12) (0.525 ≤k≤ 0.60 and 0.67 ≤k≤ 0.75 in Li(4-k)M(1-k)PkS(4)) for the Si and Sn systems, respectively. The ionic conductivity of these systems varied as a function of the changing M ions: the Si and Sn systems showed lower conductivity than the Ge system, Li(10+δ)Ge(1+δ)P(2-δ)S(12). The conductivity change for different elements might be due to the lattice size and lithium content affecting the ionic conduction. The relationship between ionic conduction, structure, and lithium concentration is discussed based on the structural and electrochemical information for the silicon, germanium, and tin systems.

19.
Inorg Chem ; 52(15): 9131-42, 2013 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-23863088

RESUMEN

O4-type LiCoO2 as a third polymorph of LiCoO2 is prepared by an ion-exchange method in aqueous media from OP4-[Li, Na]CoO2, which has an intergrowth structure of O3-LiCoO2 and P2-Na0.7CoO2. O4-type LiCoO2 is characterized by synchrotron X-ray diffraction, neutron diffraction, and X-ray absorption spectroscopy. Structural characterization reveals that O4-type LiCoO2 has an intergrowth structure of O3- and O2-LiCoO2 with stacking faulted domains. Three LiCoO2 polymorphs are formed from the close-packed CoO2 layers, which consist of edge-shared CoO6 octahedra, whereas the oxide-ion stacking is different: cubic in the O3-phase, cubic/hexagonal in the O2-phase, and alternate O3 and O2 in the O4-phase. Structural analysis using the DIFFaX program suggests that the O4-phase consists of approximately 30% of O12-domains, while stacking faults are not evidenced for O2-phase. The results suggest that a nucleation process for Na/Li ion-exchange kinetically dominates a growth process of ideal O4-domains because the presence of CoO2-Li-CoO2 blocks as O3-domains could be expected to prevent through-plane interaction of Na layers. Electrochemical behavior and structural transition processes for three LiCoO2 polymorphs are compared in Li cells. A new phase, OT(#)4-type Li0.5CoO2, is first isolated as an intergrowth phase of O3- and T(#)2-Li0.5CoO2. However, some deviations from ideal behavior as the O2/O3-intergrowth phase are also noted, presumably because of the existence of stacking faults.

20.
Nat Mater ; 10(9): 682-6, 2011 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-21804556

RESUMEN

Batteries are a key technology in modern society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Electrochemical devices with high energy and power densities can currently be powered only by batteries with organic liquid electrolytes. However, such batteries require relatively stringent safety precautions, making large-scale systems very complicated and expensive. The application of solid electrolytes is currently limited because they attain practically useful conductivities (10(-2) S cm(-1)) only at 50-80 °C, which is one order of magnitude lower than those of organic liquid electrolytes. Here, we report a lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure. It exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature. This represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes. This new solid-state battery electrolyte has many advantages in terms of device fabrication (facile shaping, patterning and integration), stability (non-volatile), safety (non-explosive) and excellent electrochemical properties (high conductivity and wide potential window).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA