Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Technol ; : 1-20, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853669

RESUMEN

High concentrations of ammonium, phosphate, and phenol are recognized as water pollutants that contribute to the degradation of soil acidity. In contrast, small quantities of these nutrients are essential for soil nutrient cycling and plant growth. Here, we reported composite materials comprising biochar, chitosan, ZrO, and Fe3O4, which were employed to mitigate ammonium, phosphate, and phenol contamination in water and to lessen soil acidity. Batch adsorption experiments were conducted to assess the efficacy of the adsorbents. Initially, comparative studies on the simultaneous removal of NH4, PO4, and phenol using CB (biochar), CBC (biochar + chitosan), CBCZrO (biochar + chitosan + ZrO), and CBCZrOFe3O4 (biochar + chitosan + ZrO + Fe3O4) were conducted. The results discovered that CBCZrOFe3O4 exhibited the highest removal percentage among the adsorbents (P < 0.05). Adsorption data for CBCZrOFe3O4 were well fitted to the second-order kinetic and Freundlich isotherm models, with maximum adsorption capacities of 112.65 mg/g for NH4, 94.68 mg/g for PO4 and 112.63 mg/g for phenol. Subsequently, the effect of CBCZrOFe3O4-loaded NH4, PO4, and phenol (CBCZrOFe3O4-APP) on soil acidity was studied over a 60-day incubation period. The findings showed no significant changes (P < 0.05) in soil exchangeable acidity, H+, Mg, K, and Na. However, there was a substantial increase in the soil pH, EC, available P, CEC, N-NH4, and N-NO3. A significant reduction was also observed in the available soil exchangeable Al and Fe (P < 0.05). This technique demonstrated multi-functionality in remediating water pollutants and enhancing soil acidity.

2.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37298709

RESUMEN

Phosphate (PO43-) is an essential nutrient in agriculture; however, it is hazardous to the environment if discharged in excess as in wastewater discharge and runoff from agriculture. Moreover, the stability of chitosan under acidic conditions remains a concern. To address these problems, CS-ZL/ZrO/Fe3O4 was synthesized using a crosslinking method as a novel adsorbent for the removal of phosphate (PO43-) from water and to increase the stability of chitosan. The response surface methodology (RSM) with a Box-Behnken design (BBD)-based analysis of variance (ANOVA) was implemented. The ANOVA results clearly showed that the adsorption of PO43- onto CS-ZL/ZrO/Fe3O4 was significant (p ≤ 0.05), with good mechanical stability. pH, dosage, and time were the three most important factors for the removal of PO43-. Freundlich isotherm and pseudo-second-order kinetic models generated the best equivalents for PO43- adsorption. The presence of coexisting ions for PO43- removal was also studied. The results indicated no significant effect on PO43- removal (p ≤ 0.05). After adsorption, PO43- was easily released by 1 M NaOH, reaching 95.77% and exhibiting a good capability over three cycles. Thus, this concept is effective for increasing the stability of chitosan and is an alternative adsorbent for the removal of PO43- from water.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Adsorción , Quitosano/química , Fosfatos , Agua/química , Cinética , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
3.
Materials (Basel) ; 16(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36984412

RESUMEN

To address Cu(II) and Cr(VI) water pollution, a carbonized zeolite/chitosan (C-ZLCH) composite adsorbent was produced via pyrolysis at 500 °C for two hours. C-ZLCH was characterized using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and zeta potential measurements. The batch experiments were performed by varying the initial pH, concentration, and contact time. The optimal pH values for Cu(II) and Cr(VI) were 8.1 and 9.6, respectively. The highest adsorption capacities for Cu(II) and Cr(VI) were 111.35 mg/g at 60 min and 104.75 mg/g at 90 min, respectively. The effects of chemicals such as sodium (Na+), glucose, ammonium (NH4+), and acid red 88 (AR88) were also studied. Statistical analysis showed that sodium had no significant effect on Cu(II) removal, in contrast to Cr(VI) removal. However, there was a significant effect of the presence of glucose, ammonium, and AR88 on both Cu(II) and Cr(VI) removal. The adsorption isotherm and kinetic models were fitted using Langmuir and pseudo-second-order models for Cu(II) and Cr(VI), respectively.

4.
Gels ; 8(12)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36547306

RESUMEN

In the present study, alkaline-treated zeolite/chitosan/Fe3+ (ZLCH-Fe) composites were prepared and analyzed using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and pH of zero point of charge (pHzpc) to remove nitrates from water. The process was carried out using an adsorption method with a varied initial pH, adsorbent dosage, initial nitrate concentration and contact time. The pHzpc demonstrated that the ZLCH-Fe surface had a positive charge between 2 and 10, making it easier to capture the negative charge of nitrate. However, the optimal pH value is 7. After 270 min, the maximum adsorption capacity and percent removal reached 498 mg/g and 99.64%, respectively. Freundlich and pseudo-second-order were fitted to the adsorption isotherm and kinetic models, respectively. An evaluation was conducted on the effects of anions-SO42- and PO43--and dyes-methylene blue (MB) and acid red 88 (AR88)-upon nitrate removal. The results indicated that the effect of the anion could be inhibited, in contrast to dye effects. However, the optimal pH values were changed to 10 for MB and 2 for AR88, resulting in a hydrogel formation. This might be indicated by the protonation of hydroxyl and amino groups resulting from a chitosan nitrate reaction in the AR88 solution.

5.
Polymers (Basel) ; 14(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35267716

RESUMEN

In the present study, we developed a new adsorbent product with zeolite crosslinked chitosan (ZL-CH hydrogel) to remove acid red 88 (AR88) in an aqueous solution. The effects of several factors, such as the comparison of ZL-CH hydrogel and the absence of chitosan, pH, adsorbent dosage, initial AR88 concentration, contact time, and ion strength, were determined. Obtained results showed that ZL-CH hydrogel improved AR88 removal compared to the absence of chitosan, with an adsorption capacity of 332.48 mg/g in equilibrium time of 1 min, and adding ionic strength had no significant effect. However, with optimal conditions at pH 2.0, dry ZL-CH became hydrogel due to protonation of amino and hydroxyl groups through hydrogen bonds in the AR88 solution. Volume fraction and interaction force decreased with increasing porosity, leading to an increase in adsorption capacity and swelling ratio. Experimental data of the adsorption process showed the Freundlich isotherm model. The equilibrium for adsorption and swelling kinetics studies showed and fitted a pseudo-second-order model. NaOH was successful as a desorbing agent with 93.8%, and it followed the pseudo-second-order kinetics model. The recycling process indicates great potential for AR88 removal.

6.
J Plant Res ; 132(5): 705-718, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31363942

RESUMEN

Direct measurements of ecophysiological processes such as leaf photosynthesis are often hampered due to the excessive time required for gas-exchange measurements and the limited availability of multiple gas analyzers. Although recent advancements in commercially available instruments have improved the ability to take measurements more conveniently, the amount of time required for each plant sample to acclimate to chamber conditions has not been sufficiently reduced. Here we describe a system of multiple gas-exchange chambers coupled with a laser spectrometer that employs tunable diode laser absorption spectroscopy (TDLAS) to measure leaf photosynthesis, stomatal conductance, and mesophyll conductance. Using four gas-exchange chambers minimizes the time loss associated with acclimation for each leaf sample. System operation is semiautomatic, and leaf temperature, humidity, and CO2 concentration can be regulated and monitored remotely by a computer system. The preliminary results with rice leaf samples demonstrated that the system is capable of high-throughput measurements, which is necessary to obtain better representativeness of the ecophysiological characteristics of plant samples.


Asunto(s)
Células del Mesófilo/fisiología , Oryza/fisiología , Fotosíntesis , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Análisis Espectral/métodos , Botánica/métodos
7.
J Environ Manage ; 200: 97-104, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28575781

RESUMEN

Soil respiration is one of the largest carbon fluxes from terrestrial ecosystems. Estimating global soil respiration is difficult because of its high spatiotemporal variability and sensitivity to land-use change. Satellite monitoring provides useful data for estimating the global carbon budget, but few studies have estimated global soil respiration using satellite data. We provide preliminary insights into the estimation of global soil respiration in 2001 and 2009 using empirically derived soil temperature equations for 17 ecosystems obtained by field studies, as well as MODIS climate data and land-use maps at a 4-km resolution. The daytime surface temperature from winter to early summer based on the MODIS data tended to be higher than the field-observed soil temperatures in subarctic and temperate ecosystems. The estimated global soil respiration was 94.8 and 93.8 Pg C yr-1 in 2001 and 2009, respectively. However, the MODIS land-use maps had insufficient spatial resolution to evaluate the effect of land-use change on soil respiration. The spatial variation of soil respiration (Q10) values was higher but its spatial variation was lower in high-latitude areas than in other areas. However, Q10 in tropical areas was more variable and was not accurately estimated (the values were >7.5 or <1.0) because of the low seasonal variation in soil respiration in tropical ecosystems. To solve these problems, it will be necessary to validate our results using a combination of remote sensing data at higher spatial resolution and field observations for many different ecosystems, and it will be necessary to account for the effects of more soil factors in the predictive equations.


Asunto(s)
Ciclo del Carbono , Ecosistema , Tecnología de Sensores Remotos , Suelo , Clima
8.
J Plant Res ; 128(5): 777-89, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26038271

RESUMEN

We investigated stomatal conductance (g(s)) and mesophyll conductance (g(m)) in response to atmospheric CO2 concentration [CO2] in two primitive land plants, the fern species Pteridium aquilinum and Thelypteris dentata, using the concurrent measurement of leaf gas exchange and carbon isotope discrimination. [CO2] was initially decreased from 400 to 200 µmol mol(-1), and then increased from 200 to 700 µmol mol(-1), and finally decreased from 700 to 400 µmol mol(-1). Analysis by tunable diode laser absorption spectroscopy (TDLAS) revealed a rapid and continuous response in g m within a few minutes. In most cases, both ferns showed rapid and significant responses of g m to changes in [CO2]. The largest changes (quote % decrease) were obtained when [CO2] was decreased from 400 to 200 µmol mol(-1). This is in contrast to angiosperms where an increase in g(m) is commonly observed at low [CO2]. Similarly, fern species observed little or no response of g(s) to changes in [CO2] whereas, a concomitant decline of g(m) and g(s) with [CO2] is often reported in angiosperms. Together, these results suggest that regulation of g(m) to [CO2] may differ between angiosperms and ferns.


Asunto(s)
Dióxido de Carbono/metabolismo , Helechos/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Pteridium/metabolismo
9.
PLoS One ; 10(3): e0119001, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25793387

RESUMEN

Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the "actual" values by decreasing the variance of the posterior distribution of the values.


Asunto(s)
Dióxido de Carbono , Ecosistema , Bosques , Suelo/química , Japón , Modelos Teóricos
10.
PLoS One ; 9(6): e97986, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24886977

RESUMEN

Earthworms are important soil macrofauna inhabiting almost all ecosystems. Their biomass is large and their burrowing and ingestion of soils alters soil physicochemical properties. Because of their large biomass, earthworms are regarded as an indicator of "soil heath". However, primarily because the difficulties in quantifying their behavior, the extent of their impact on soil material flow dynamics and soil health is poorly understood. Image data, with the aid of image processing tools, are a powerful tool in quantifying the movements of objects. Image data sets are often very large and time-consuming to analyze, especially when continuously recorded and manually processed. We aimed to develop a system to quantify earthworm movement from video recordings. Our newly developed program successfully tracked the two-dimensional positions of three separate parts of the earthworm and simultaneously output the change in its body length. From the output data, we calculated the velocity of the earthworm's movement. Our program processed the image data three times faster than the manual tracking system. To date, there are no existing systems to quantify earthworm activity from continuously recorded image data. The system developed in this study will reduce input time by a factor of three compared with manual data entry and will reduce errors involved in quantifying large data sets. Furthermore, it will provide more reliable measured values, although the program is still a prototype that needs further testing and improvement. Combined with other techniques, such as measuring metabolic gas emissions from earthworm bodies, this program could provide continuous observations of earthworm behavior in response to environmental variables under laboratory conditions. In the future, this standardized method will be applied to other animals, and the quantified earthworm movement will be incorporated into models of soil material flow dynamics or behavior in response to chemical substances present in the soil.


Asunto(s)
Automatización , Tamaño Corporal , Oligoquetos/anatomía & histología , Animales , Movimiento , Oligoquetos/fisiología , Especificidad de la Especie , Factores de Tiempo
11.
Glob Chang Biol ; 19(4): 1114-25, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23504889

RESUMEN

Temperature sensitivity of soil organic matter (SOM) decomposition may have a significant impact on global warming. Enzyme-kinetic hypothesis suggests that decomposition of low-quality substrate (recalcitrant molecular structure) requires higher activation energy and thus has greater temperature sensitivity than that of high-quality, labile substrate. Supporting evidence, however, relies largely on indirect indices of substrate quality. Furthermore, the enzyme-substrate reactions that drive decomposition may be regulated by microbial physiology and/or constrained by protective effects of soil mineral matrix. We thus tested the kinetic hypothesis by directly assessing the carbon molecular structure of low-density fraction (LF) which represents readily accessible, mineral-free SOM pool. Using five mineral soil samples of contrasting SOM concentrations, we conducted 30-days incubations (15, 25, and 35 °C) to measure microbial respiration and quantified easily soluble C as well as microbial biomass C pools before and after the incubations. Carbon structure of LFs (<1.6 and 1.6-1.8 g cm(-3) ) and bulk soil was measured by solid-state (13) C-NMR. Decomposition Q10 was significantly correlated with the abundance of aromatic plus alkyl-C relative to O-alkyl-C groups in LFs but not in bulk soil fraction or with the indirect C quality indices based on microbial respiration or biomass. The warming did not significantly change the concentration of biomass C or the three types of soluble C despite two- to three-fold increase in respiration. Thus, enhanced microbial maintenance respiration (reduced C-use efficiency) especially in the soils rich in recalcitrant LF might lead to the apparent equilibrium between SOM solubilization and microbial C uptake. Our results showed physical fractionation coupled with direct assessment of molecular structure as an effective approach and supported the enzyme-kinetic interpretation of widely observed C quality-temperature relationship for short-term decomposition. Factors controlling long-term decomposition Q10 are more complex due to protective effect of mineral matrix and thus remain as a central question.


Asunto(s)
Microbiología del Suelo , Suelo , Temperatura , Espectroscopía de Resonancia Magnética , Estructura Molecular
12.
Sensors (Basel) ; 12(3): 3641-55, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22737029

RESUMEN

Many sensors have to be used simultaneously for multipoint carbon dioxide (CO(2)) observation. All the sensors should be calibrated in advance, but this is a time-consuming process. To seek a simplified calibration method, we used four commercial CO(2) sensor models and characterized their output tendencies against ambient temperature and length of use, in addition to offset characteristics. We used four samples of standard gas with different CO(2) concentrations (0, 407, 1,110, and 1,810 ppm). The outputs of K30 and AN100 models showed linear relationships with temperature and length of use. Calibration coefficients for sensor models were determined using the data from three individual sensors of the same model to minimize the relative RMS error. When the correction was applied to the sensors, the accuracy of measurements improved significantly in the case of the K30 and AN100 units. In particular, in the case of K30 the relative RMS error decreased from 24% to 4%. Hence, we have chosen K30 for developing a portable CO(2) measurement device (10 × 10 × 15 cm, 900 g). Data of CO(2) concentration, measurement time and location, temperature, humidity, and atmospheric pressure can be recorded onto a Secure Digital (SD) memory card. The CO(2) concentration in a high-school lecture room was monitored with this device. The CO(2) data, when corrected for simultaneously measured temperature, water vapor partial pressure, and atmospheric pressure, showed a good agreement with the data measured by a highly accurate CO(2) analyzer, LI-6262. This indicates that acceptable accuracy can be realized using the calibration method developed in this study.


Asunto(s)
Dióxido de Carbono/análisis , Presión Atmosférica , Calibración , Dióxido de Carbono/normas , Análisis por Conglomerados , Gases/análisis , Humedad , Técnicas Analíticas Microfluídicas/normas , Temperatura
13.
Environ Biosafety Res ; 8(4): 183-202, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20883658

RESUMEN

With the extensive adoption of transgenic crops, an understanding of transgene flow is essential to manage gene flow to non-GM crops. Thus, a flexible and accurate numerical model is required to assess gene flow through pollen dispersal. A three-dimensional atmospheric model combined with a diffusion transport model would be a useful tool for predicting pollen dispersal since it would be flexible enough to incorporate the effects of factors such as the spatial arrangement of crop combinations, land use, topography, windbreaks, and buildings. We applied such a model to field measurements of gene flow between two adjacent maize (Zea mays) cultivars, with suppression effects due to windbreaks, in an experimental cornfield in Japan. This combined model reproduced the measured cross-pollination distribution quite well in the case of maize plots with plant windbreaks slightly taller than the maize and without windbreaks, but the model underestimated the effect of a 6-m-tall windbreak net beyond 25 m from the donor pollen source on cross-pollination. The underestimation was most probably due to the problem of assimilated wind data. The model showed that the 6-m-tall windbreak and the plant wind break suppressed average cross-pollination rate by about 60% and 30%, respectively. Half-tall and coarser mesh windbreak net suppressed cross-pollination rates by 40% by reducing the swirl of donor pollen by reduced wind speed.


Asunto(s)
Polen/fisiología , Polinización/fisiología , Viento , Zea mays/fisiología
14.
Environ Biosafety Res ; 3(4): 197-207, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-16028796

RESUMEN

The safety and impact on the environment of transgenic crops are important issues, and studies have shown that pollen from transgenic Bt (Bacillus thuringiensis) corn (Zea mays L.) may kill nontarget insects. To develop an algorithm for assessing the environmental effect of transgenic crops, we arranged a field experiment in Tsukuba, Japan. Pollen dispersal and deposition were measured inside and outside a cornfield throughout the flowering period. Weather conditions such as wind speed and direction were measured at the same time. Pollen dispersal peaked 1 week after the start of flowering and continued for 12 days thereafter. The variation in daily pollen dispersal was similar at all observation points. Both pollen dispersal and deposition decreased exponentially with distance from the cornfield on all days. We estimated potential pollen deposition with a quasi-mechanistic model that incorporates the effects of wind direction, wind speed, and flowering intensity. The daily potential deposition was summed over the flowering period, and then the relationship between distance from the cornfield and the integrated potential deposition was estimated. It was possible to show the effective area of the environmental risk zone posed by genetically modified pollen by combining the distance/deposition relationship with the dose/response relationship derived from a laboratory assay. The algorithm described here can be applied to various wind-pollinated plants to estimate both potential and integrated pollen deposition.


Asunto(s)
Algoritmos , Plantas Modificadas Genéticamente , Polen , Zea mays/genética , Animales , Bacillus thuringiensis/patogenicidad , Genética de Población , Insectos , Conceptos Meteorológicos , Control de Plagas , Medición de Riesgo , Seguridad , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...