Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Microorganisms ; 12(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38399816

RESUMEN

Antimicrobial peptides (AMPs) are present in a wide range of plants, animals, and microorganisms. Since AMPs are characterized by their effectiveness against emergent antibiotic-resistant bacteria, they are attracting attention as next-generation antimicrobial compounds that could solve the problem of drug-resistant bacteria. Persulcatusin (IP), an antibacterial peptide derived from the hard tick Ixodes persulcatus, shows high antibacterial activity against various Gram- positive bacteria as well as multidrug-resistant bacteria. However, reports on the antibacterial action and resistance mechanisms of IP are scarce. In this study, we spontaneously generated mutants showing increased a minimum inhibitory concentration (MIC) of IP and analyzed their cross-resistance to other AMPs and antibiotics. We also used fluorescent probes to investigate the target of IP activity by evaluating IP-induced damage to the bacterial cytoplasmic membrane. Our findings suggest that the antimicrobial activity of IP on bacterial cytoplasmic membranes occurs via a mechanism of action different from that of known AMPs. Furthermore, we screened for mutants with high susceptibility to IP using a transposon mutant library and identified 16 genes involved in IP resistance. Our results indicate that IP, like other AMPs, depolarizes the bacterial cytoplasmic membrane, but it may also alter membrane structure and inhibit cell-wall synthesis.

2.
Biochem Biophys Res Commun ; 699: 149566, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38290176

RESUMEN

There is increasing interest in the antimicrobial activity of mannosylerythritol lipids-B (MEL-B) against Gram-positive bacteria such as Staphylococcus aureus (S. aureus). However, the specific molecules involved in MEL-B's antimicrobial action against S. aureus have not been identified. This study utilized the Nebraska transposon mutant library (NTML), which contains 1920 mutants, each lacking three-quarters of the genes found in S. aureus. The NTML was screened to identify mutants resistant to MEL-B. Four mutants (Accession Number: SAUSA300_0904, SAUSA300_0752, SAUSA300_0387, and SAUSA300_2311) largely unaffected by incubation with MEL-B, indicating MEL-B resistance. Despite the strong binding of MEL-B to these mutants, the four molecules encoded by the deleted genes (yjbI, clpP, pbuX, or brpS) in each mutant were not directly recognized by MEL-B. Given that these molecules are not localized on the outer surface of S. aureus and that the antibacterial activity of MEL-B against S. aureus is facilitated by the effective transfer of two antibacterial fatty acids (caprylic acid and myristoleic acid) to S. aureus via ME, the deletion of each of the four molecules may alter the peptidoglycan structure, potentially inhibiting the effective transfer of these antimicrobial fatty acids into S. aureus.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Antiinfecciosos/farmacología , Infecciones Estafilocócicas/microbiología , Ácidos Grasos , Pruebas de Sensibilidad Microbiana
3.
Microorganisms ; 12(1)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38257933

RESUMEN

Intestinal microbiota and Toll-like receptor 2 (TLR2), which can bind lipoteichoic acid produced by microbiota, might contribute to the pathogenesis of Parkinson's disease (PD), which is characterized by α-synuclein accumulation. Although the contribution of intestinal microbiota and TLR2 to PD pathology was validated in genetic PD models, evidence suggests that the effects of TLR2 signaling on proteinopathy might depend on the presence of a genetic etiology. We examined the impact of intestinal microbiota and TLR2 signaling on α-synuclein pathology in a nontransgenic mouse model of sporadic PD. While an α-synuclein preformed fibrils injection successfully reproduced PD pathology by inducing accumulation of α-synuclein aggregates, microglial activation and increased TLR2 expression in the brains of nontransgenic mice, antibiotic-induced reduction in the density of intestinal microbiota and TLR2 knockout had small impact on these changes. These findings, which are in contrast to those reported in transgenic mice harboring transgene encoding α-synuclein, indicate that the contribution of intestinal microbiota and TLR2 signaling to α-synuclein pathogenesis might be influenced by the presence of a genetic etiology. Additionally, these findings suggest that integrating insights from this experimental model and genetic models would further advance our understanding of the molecular mechanisms underlying sporadic PD.

4.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37373388

RESUMEN

d-amino acids have recently been found to be present in the extracellular milieu at millimolar levels and are therefore assumed to play a physiological function. However, the pathway (or potential pathways) by which these d-amino acids are secreted remains unknown. Recently, Escherichia coli has been found to possess one or more energy-dependent d-alanine export systems. To gain insight into these systems, we developed a novel screening system in which cells expressing a putative d-alanine exporter could support the growth of d-alanine auxotrophs in the presence of l-alanyl-l-alanine. In the initial screening, five d-alanine exporter candidates, AlaE, YmcD, YciC, YraM, and YidH, were identified. Transport assays of radiolabeled d-alanine in cells expressing these candidates indicated that YciC and AlaE resulted in lower intracellular levels of d-alanine. Further detailed transport assays of AlaE in intact cells showed that it exports d-alanine in an expression-dependent manner. In addition, the growth constraints on cells in the presence of 90 mM d-alanine were mitigated by the overexpression of AlaE, implying that AlaE could export free d-alanine in addition to l-alanine under conditions in which intracellular d/l-alanine levels are raised. This study also shows, for the first time, that YciC could function as a d-alanine exporter in intact cells.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Proteínas de Escherichia coli , Escherichia coli , Alanina/metabolismo , Proteínas de Escherichia coli/metabolismo , Aminoácidos/metabolismo , Transporte Biológico , Sistemas de Transporte de Aminoácidos Neutros/metabolismo
5.
J Gen Appl Microbiol ; 69(3): 142-149, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36567121

RESUMEN

In the fermentative production of compounds by using microorganisms, control of the transporter activity responsible for substrate uptake and product efflux, in addition to intracellular metabolic modification, is important from a productivity perspective. However, there has been little progress in analyses of the functions of microbial membrane transporters, and because of the difficulty in finding transporters that transport target compounds, only a few transporters have been put to practical use. Here, we constructed a Corynebacterium glutamicum-derived transporter expression library (CgTP-Express library) with the fusion partner gene mstX and used a peptide-feeding method with the dipeptide L-Ala-L-Ala to search for alanine exporters in the library. Among 39 genes in the library, five candidate alanine exporters (NCgl2533, NCgl2683, NCgl0986, NCgl0453, and NCgl0929) were found; expression of NCgl2533 increased the alanine concentration in cell culture. The CgTP-Express library was thus effective for finding a new transporter candidate.


Asunto(s)
Corynebacterium glutamicum , Proteínas de Transporte de Membrana , Fermentación , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Alanina/genética , Alanina/metabolismo , Transporte Biológico , Ingeniería Metabólica/métodos
6.
Microorganisms ; 10(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36363708

RESUMEN

Staphylococcus aureus is one of the most important pathogens in humans as well as in livestock. Particularly, bovine mastitis caused by S. aureus is a serious issue in dairy farms due to disease recurrence. Here, cases of S. aureus-mediated intramammary infection occurring in the Miyagi Prefecture in Japan were monitored from May 2015 to August 2019; a total of 59 strains (49 from bovine milk and 10 from bulk milk) were obtained from 15 dairy farms and analyzed via sequence-based typing methods and antibiotic susceptibility tests. Two pairs of isolates were determined as recurrence cases from the same cows in distinct farms. The sequence type (ST), spa type, and coa type of each pair were the same: one pair showed ST705, t529, and VIb and the other showed ST352, t267, and VIc. In addition, the possession of toxin genes analyzed of each pair was exactly the same. Furthermore, seven oxacillin-sensitive clonal complex 398 isolates were obtained from a single farm. This is the first confirmed case of a Methicillin-Sensitive SA (MSSA) ST398 strain isolated from mastitis-containing cows in Japan. Our findings suggest that nationwide surveillance of the distribution of ST398 strains in dairy farms is important for managing human and animal health.

7.
Microbiology (Reading) ; 168(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35275050

RESUMEN

AlaE is the smallest amino acid exporter identified in Escherichia coli. It exports l-alanine using the proton motive force and plays a pivotal role in maintaining intracellular l-alanine homeostasis by acting as a safety valve. However, our understanding of the molecular mechanisms of substrate export by AlaE is still limited because structural information is lacking. Due to its small size (149 amino acid residues), it has been speculated that AlaE functions by forming an oligomer. In this study, we performed chemical cross-linking and pull-down assays and showed that AlaE indeed generates homo-oligomers as a functional unit. Previous random mutagenesis experiments identified three loss-of-function AlaE point mutations in the predicted transmembrane helix 4 (TM4) region, two of which are present in the GxxxG motif. When alanine-scanning mutagenesis was applied to the TM4 region, the AlaE derivatives that had amino acid substitutions around the GxxxG motif showed low l-alanine export activities, indicating that the GxxxG motif in TM4 plays an important role in substrate export. However, these AlaE variants with low activity could still form oligomers. We therefore concluded that AlaE forms homo-oligomers and that the GxxxG motif in the TM4 region plays an essential role in AlaE activity but is not involved in AlaE oligomer formation.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Proteínas de Escherichia coli , Alanina/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Transporte Biológico/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo
8.
World J Microbiol Biotechnol ; 38(3): 54, 2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35149902

RESUMEN

Mannosylerythritol lipid-B (MEL-B), which comprises ester-bonded hydrophilic ME and hydrophobic fatty acids, is a bio-surfactant with various unique properties, including antimicrobial activity against most gram-positive bacteria. The gram-positive Staphylococcus aureus is a causative pathogen of dairy cattle mastitis, which results in considerable economic loss in the dairy industry. Here, we demonstrate the efficacy of MEL-B as a disinfectant against bovine-derived S. aureus and elucidate a mechanism of action of MEL-B in the inhibition of bacterial growth. The growth of bovine mastitis causative S. aureus BM1006 was inhibited when cultured with MEL-B above 10 ppm. The activity of MEL-B required fatty acids (i.e., caprylic and myristoleic acids) as ME, the component of MEL-B lacking fatty acids, did not inhibit the growth of S. aureus even at high concentrations. Importantly, ME-bound fatty acids effectively inhibited the growth of S. aureus when compared with free fatty acids. Specifically, the concentrations of ME-bound fatty acids and free caprylic and myristoleic acids required to inhibit the growth of S. aureus were 10, 1442, and 226 ppm, respectively. The involvement of ME in the antimicrobial activity of MEL-B was confirmed by digestion of MEL-B with alkali, which dissociated ME and fatty acids. These results indicated that a mechanism of action of MEL-B in inhibiting the growth of S. aureus could be explained by the effective transporting of antimicrobial fatty acids to the bacterial surface via hydrophilic ME.


Asunto(s)
Antiinfecciosos , Mastitis Bovina , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Bovinos , Femenino , Glucolípidos , Mastitis Bovina/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus
9.
Microbiome ; 10(1): 31, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35184756

RESUMEN

BACKGROUND: Establishing fecal microbiota transplantation (FMT) to prevent multifactorial diarrhea in calves is challenging because of the differences in farm management practices, the lack of optimal donors, and recipient selection. In this study, the underlying factors of successful and unsuccessful FMT treatment cases are elucidated, and the potential markers for predicting successful FMT are identified using fecal metagenomics via 16S rRNA gene sequencing, fecal metabolomics via capillary electrophoresis time-of-flight mass spectrometry, and machine learning approaches. RESULTS: Specifically, 20 FMT treatment cases, in which feces from healthy donors were intrarectally transferred into recipient diarrheal calves, were conducted with a success rate of 70%. Selenomonas was identified as a microorganism genus that showed significant donor-recipient compatibility in successful FMT treatments. A strong positive correlation between the microbiome and metabolome data, which is a prerequisite factor for FMT success, was confirmed by Procrustes analysis in successful FMT (r = 0.7439, P = 0.0001). Additionally, weighted gene correlation network analysis confirmed the positively or negatively correlated pairs of bacterial taxa (family Veillonellaceae) and metabolomic features (i.e., amino acids and short-chain fatty acids) responsible for FMT success. Further analysis aimed at establishing criteria for donor selection identified the genus Sporobacter as a potential biomarker in successful donor selection. Low levels of metabolites, such as glycerol 3-phosphate, dihydroxyacetone phosphate, and isoamylamine, in the donor or recipients prior to FMT, are predicted to facilitate FMT. CONCLUSIONS: Overall, we provide the first substantial evidence of the factors related to FMT success or failure; these findings could improve the design of future microbial therapeutics for treating diarrhea in calves. Video abstract.


Asunto(s)
Diarrea , Trasplante de Microbiota Fecal , Animales , Bovinos , Diarrea/microbiología , Diarrea/terapia , Trasplante de Microbiota Fecal/métodos , Heces/microbiología , ARN Ribosómico 16S/genética , Resultado del Tratamiento
10.
Cell Rep ; 36(10): 109655, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34496253

RESUMEN

The evolutionary strategy of transferring maternal antibodies via milk profoundly impacts the survival, lifelong health, and wellbeing of all neonates, including a pronounced impact on human breastfeeding success and infant development. While there has been increased recognition that interorgan connectivity influences the quality of a mother's milk, potentially to personalize it for her offspring, the underlying bases for these processes are incompletely resolved. Here, we define an essential role of Peyer's patches (PPs) for the generation of plasma cells that secrete maternal immunoglobulin A (IgA) into milk. Our metagenomic analysis reveals that the presence of certain residential microorganisms in the gastrointestinal (GI) tract, such as Bacteroides acidifaciens and Prevotella buccalis, is indispensable for the programming of maternal IgA synthesis prior to lactational transfer. Our data provide important insights into how the microbiome of the maternal GI environment, specifically through PPs, can be communicated to the next generation via milk.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/inmunología , Leche Humana/inmunología , Células Plasmáticas/citología , Animales , Humanos , Inmunoglobulina A/inmunología , Inmunoglobulina A Secretora/inmunología , Ratones , Ganglios Linfáticos Agregados/inmunología
11.
Microorganisms ; 9(3)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668720

RESUMEN

In Escherichia coli, L-alanine is synthesized by three isozymes: YfbQ, YfdZ, and AvtA. When an E. coli L-alanine auxotrophic isogenic mutant lacking the three isozymes was grown on L-alanine-deficient minimal agar medium, L-alanine prototrophic mutants emerged considerably more frequently than by spontaneous mutation; the emergence frequency increased over time, and, in an L-alanine-supplemented minimal medium, correlated inversely with L-alanine concentration, indicating that the mutants were derived through stress-induced mutagenesis. Whole-genome analysis of 40 independent L-alanine prototrophic mutants identified 16 and 18 clones harboring point mutation(s) in pyruvate dehydrogenase complex and phosphotransacetylase-acetate kinase pathway, which respectively produce acetyl coenzyme A and acetate from pyruvate. When two point mutations identified in L-alanine prototrophic mutants, in pta (D656A) and aceE (G147D), were individually introduced into the original L-alanine auxotroph, the isogenic mutants exhibited almost identical growth recovery as the respective cognate mutants. Each original- and isogenic-clone pair carrying the pta or aceE mutation showed extremely low phosphotransacetylase or pyruvate dehydrogenase activity, respectively. Lastly, extracellularly-added pyruvate, which dose-dependently supported L-alanine auxotroph growth, relieved the L-alanine starvation stress, preventing the emergence of L-alanine prototrophic mutants. Thus, L-alanine starvation-provoked stress-induced mutagenesis in the L-alanine auxotroph could lead to intracellular pyruvate increase, which eventually induces L-alanine prototrophy.

12.
Int J Mol Sci ; 20(19)2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31591285

RESUMEN

The intracellular level of amino acids is determined by the balance between their anabolic and catabolic pathways. L-alanine is anabolized by three L-alanine synthesizing enzymes and catabolized by two racemases and D-amino acid dehydrogenase (DadA). In addition, its level is regulated by L-alanine movement across the inner membrane. We identified the novel gene alaE, encoding an L-alanine exporter. To elucidate the physiological function of L-Alanine exporter, AlaE, we determined the susceptibility of alaE-, dadA-, and alaE/dadA-deficient mutants, derived from the wild-type strain MG1655, to L-alanyl-L-alanine (Ala-Ala), which shows toxicity to the L-alanine-nonmetabolizing variant lacking alaE. The dadA-deficient mutant has a similar minimum inhibitory concentration (MIC) (>1.25 mg/mL) to that observed in MG1655. However, alaE- and alaE/dadA-deficient mutants had MICs of 0.04 and 0.0025 mg/mL, respectively. The results suggested that the efficacy of AlaE to relieve stress caused by toxic intracellular accumulation of L-alanine was higher than that of DadA. Consistent with this, the intracellular level of alanine in the alaE-mutant was much higher than that in MG1655 and the dadA-mutant. We, therefore, conclude that AlaE functions as a 'safety-valve' to prevent the toxic level accumulation of intracellular L-alanine under a peptide-rich environment, such as within the animal intestine.


Asunto(s)
Alanina/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , D-Aminoácido Oxidasa/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Alanina/toxicidad , Sistemas de Transporte de Aminoácidos Neutros/genética , Transporte Biológico , D-Aminoácido Oxidasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana , Mutación , Estrés Fisiológico
13.
Pathog Dis ; 77(4)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31344225

RESUMEN

Susceptibility to enterohemorrhagic Escherichia coli (EHEC) infection varies among humans. The intestinal microbiota seems to play an essential role in host defense against EHEC; thus, we hypothesized that indigenous bacteria, such as Clostridium ramosum and Clostridium perfringens, could influence the susceptibility to EHEC infection. To evaluate the effect of indigenous bacteria on EHEC infection, germ-free mice were precolonized with each indigenous bacterium, and then infected with EHEC O157:H7. Precolonization with C. ramosum or C. perfringens completely prevented death from EHEC infection througout a test period. Precolonization with C. ramosum also reduced the level of secreted Shiga toxin (Stx) 2 and prevented histopathological changes in the kidneys in a similar way to precolonization with Bifidobacterium longum, which is used as a model for preventing EHEC infection. In contrast, the mice precolonized with C. perfringens showed mild renal injuries. When evaluated using an in vitro co-culturing system, again C. ramosum inhibited the growth and Stx production of EHEC more potently than C. perfringens. These results indicate that C. ramosum and C. perfringens suppressed EHEC infection; however, the extent of their preventive effects differed. Therefore, the susceptibility to EHEC infection and its severity can depend on the functional bacteria present in the intestinal microbiota of individuals.


Asunto(s)
Antibiosis , Clostridium perfringens/crecimiento & desarrollo , Susceptibilidad a Enfermedades , Infecciones por Escherichia coli/prevención & control , Escherichia coli O157/crecimiento & desarrollo , Firmicutes/crecimiento & desarrollo , Animales , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Microbioma Gastrointestinal , Ratones
14.
Front Vet Sci ; 6: 70, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30915344

RESUMEN

In March 2011, an accident at the Fukushima Daiichi Nuclear Power Plant led to major problems, including the release of radionuclides such as Cesium (Cs)-137 into the environment. Ever since this accident, Cs-137 in foods has become a serious problem. In this study, we determined the concentration of Cs-137 in the feces, urine, and ruminal contents of cattle and demonstrated the possibility of its elimination from the body by intestinal bacteria. The results revealed a high Cs-137 concentration in the feces; in fact, this concentration was higher than that in skeletal muscles and other samples from several animals. Furthermore, intestinal bacteria were able to trap Cs-137, showing an uptake ratio within the range of 38-81% in vitro. This uptake appeared to be mediated through the sodium-potassium (Na+-K+) ion pump in the bacterial cell membrane. This inference was drawn based on the fact that the uptake ratio of Cs-137 was decreased in media with high potassium concentration. In addition, it was demonstrated that intestinal bacteria hindered the trapping of Cs-137 by the animal. Cattle feces showed high concentration of Cs-137 and intestinal bacteria trapped Cs-137. This study is the first report showing that intestinal bacteria contribute to the elimination of Cs-137 from the body.

15.
Biomed Rep ; 10(3): 175-182, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30906546

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 has been known to cause outbreaks of hemorrhagic colitis and hemolytic uremic syndrome. We previously demonstrated that intestinal flora contribute to the prevention of EHEC infection in a mouse model. However, it has not yet been determined whether Bacteroides, a predominant genus in the human intestine, contributes to the prevention of EHEC infection. The aim of the present study was to investigate the effect of Bacteroides fragilis (B. fragilis) and Bacteroides vulgatus (B. vulgatus) on EHEC O157:H7 infection in vivo using gnotobiotic mice. These strains were inoculated into germ-free mice to create a gnotobiotic mouse model. EHEC was inoculated into the mice, which were then monitored for 7 days for any change in symptoms. The mice that had been pre-colonized with the Bacteroides strains did not develop lethal EHEC infection, although several inflammatory symptoms were observed in the B. vulgatus pre-colonized group. However, no inflammatory symptoms were identified in the B. fragilis pre-colonized group. Moreover, B. fragilis exerted an inhibitory effect on enterocyte-like cell apoptosis. B. fragilis protected HT29 cells from apoptosis caused by Shiga toxin. In conclusion, the findings of the present study demonstrated that colonization by Bacteroides strains can inhibit EHEC infection.

16.
Vet Res ; 49(1): 22, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29482613

RESUMEN

Staphylococcus aureus is a major pathogen that causes subclinical mastitis associated with huge economic losses to the dairy industry. A few vaccines for bovine mastitis are available, and they are expected to induce the production of S. aureus-specific antibodies that prevent bacterial adherence to host cells or promote opsonization by phagocytes. However, the efficacy of such vaccines are still under debate; therefore, further research focusing on improving the current vaccines by seeking additional mechanisms of action is required to reduce economic losses due to mastitis in the dairy industry. Here, we generated S. aureus-specific bovine IgG antibodies (anti-S. aureus) that directly inhibited bacterial growth in vitro. Inhibition depended on specificity for anti-S. aureus, not the interaction between Protein A and the fragment crystallizable region of the IgG antibodies or bacterial agglutination. An in vitro culture study using S. aureus strain JE2 and its deletion mutant JE2ΔSrtA, which lacks the gene encoding sortase A, revealed that the effect of anti-S. aureus was sortase-A-independent. Sortase A is involved in the synthesis of cell-wall-associated proteins. Thus, other surface molecules, such as membrane proteins, cell surface polysaccharides, or both, may trigger the inhibition of bacterial growth by anti-S. aureus. Together, our findings contribute insights into developing new strategies to further improve the available mastitis vaccine by designing a novel antigen on the surface of S. aureus to induce inhibitory signals that prevent bacterial growth.


Asunto(s)
Anticuerpos Antibacterianos/metabolismo , Enfermedades de los Bovinos/inmunología , Inmunoglobulina G/metabolismo , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus/inmunología , Animales , Bovinos , Masculino , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/crecimiento & desarrollo
17.
J Biosci Bioeng ; 123(4): 444-450, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28057466

RESUMEN

The alaE gene in Escherichia coli encodes an l-alanine exporter that catalyzes the active export of l-alanine using proton electrochemical potential. In our previous study, alaE expression was shown to increase in the presence of l-alanyl-l-alanine (Ala-Ala). In this study, the global regulator leucine-responsive regulatory protein (Lrp) was identified as an activator of the alaE gene. A promoter less ß-galactosidase gene was fused to an alaE upstream region (240 nucleotides). Cells that were lacZ-deficient and harbored this reporter plasmid showed significant induction of ß-galactosidase activity (approximately 17-fold) in the presence of 6 mM l-alanine, l-leucine, and Ala-Ala. However, a reporter plasmid possessing a smaller alaE upstream region (180 nucleotides) yielded transformants with strikingly low enzyme activity under the same conditions. In contrast, lrp-deficient cells showed almost no ß-galactosidase induction, indicating that Lrp positively regulates alaE expression. We next performed an electrophoretic mobility shift assay (EMSA) and a DNase I footprinting assay using purified hexahistidine-tagged Lrp (Lrp-His). Consequently, we found that Lrp-His binds to the alaE upstream region spanning nucleotide -161 to -83 with a physiologically relevant affinity (apparent KD, 288.7 ± 83.8 nM). Furthermore, the binding affinity of Lrp-His toward its cis-element was increased by l-alanine and l-leucine, but not by Ala-Ala and d-alanine. Based on these results, we concluded that the gene expression of the alaE is regulated by Lrp in response to intracellular levels of l-alanine, which eventually leads to intracellular homeostasis of l-alanine concentrations.


Asunto(s)
Alanina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteína Reguladora de Respuesta a la Leucina/metabolismo , Alanina/farmacología , Sistemas de Transporte de Aminoácidos Neutros/biosíntesis , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Secuencia de Bases , Huella de ADN , Desoxirribonucleasa I/metabolismo , Dipéptidos/metabolismo , Dipéptidos/farmacología , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Reporteros/genética , Leucina/metabolismo , Leucina/farmacología , Proteína Reguladora de Respuesta a la Leucina/deficiencia , Operón/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Secuencias Reguladoras de Ácidos Nucleicos/genética , Regulación hacia Arriba/efectos de los fármacos , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
18.
Anim Sci J ; 88(7): 1027-1033, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27878891

RESUMEN

Streptococcus bovis, an etiologic agent of rumen acidosis in cattle, is a rumen bacterium that can grow in a chemically defined medium containing ammonia as a sole source of nitrogen. To understand its ability to assimilate inorganic ammonia, we focused on the function of glutamate dehydrogenase. In order to identify the gene encoding this enzyme, we first amplified an internal region of the gene by using degenerate primers corresponding to hexameric family I and NAD(P)+ binding motifs. Subsequently, inverse PCR was used to identify the whole gene, comprising an open reading frame of 1350 bp that encodes 449 amino acid residues that appear to have the substrate binding site of glutamate dehydrogenase observed in other organisms. Upon introduction of a recombinant plasmid harboring the gene into an Escherichia coli glutamate auxotroph lacking glutamate dehydrogenase and glutamate synthase, the transformants gained the ability to grow on minimal medium without glutamate supplementation. When cell extracts of the transformant were resolved by blue native polyacrylamide gel electrophoresis followed by activity staining, a single protein band appeared that corresponded to the size of S. bovis glutamate dehydrogenase. Based on these results, we concluded that the gene obtained encodes glutamate dehydrogenase in S. bovis.


Asunto(s)
Clonación Molecular , Glutamato Deshidrogenasa/genética , Rumen/microbiología , Streptococcus bovis/enzimología , Streptococcus bovis/genética , Acidosis/microbiología , Acidosis/veterinaria , Amoníaco/metabolismo , Animales , Secuencia de Bases , Bovinos , Enfermedades de los Bovinos/microbiología , Glutamato Deshidrogenasa/metabolismo , Reacción en Cadena de la Polimerasa , Análisis de Secuencia/métodos , Gastropatías/microbiología , Gastropatías/veterinaria , Streptococcus bovis/metabolismo , Streptococcus bovis/patogenicidad
19.
Arch Microbiol ; 199(1): 105-114, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27572251

RESUMEN

The Escherichia coli alaE gene encodes the L-alanine exporter, AlaE, that catalyzes active export of L-alanine using proton electrochemical potential. The transporter comprises only 149 amino acid residues and four predicted transmembrane domains (TMs), which contain three charged amino acid residues. The AlaE-deficient L-alanine non-metabolizing cells (ΔalaE cells) appeared hypersusceptible to L-alanyl-L-alanine showing a minimum inhibitory concentration (MIC) of 2.5 µg/ml for the dipeptide due to a toxic accumulation of L-alanine. To elucidate the mechanism by which AlaE exports L-alanine, we replaced charged amino acid residues in the TMs, glutamic acid-30 (TM-I), arginine-45 (TM-II), and aspartic acid-84 (TM-III) with their respective charge-conserved amino acid or a net neutral cysteine. The ΔalaE cells producing R45K or R45C appeared hypersusceptible to the dipeptide, indicating that arginine-45 is essential for AlaE activity. MIC of the dipeptide in the ΔalaE cells expressing E30D and E30C was 156 µg/ml and >10,000 µg/ml, respectively, thereby suggesting that a negative charge at this position is not essential. The ΔalaE cells expressing D84E or D84C showed an MIC >10,000 and 78 µg/ml, respectively, implying that a negative charge is required at this position. These results were generally consistent with that of the L-alanine accumulation experiments in intact cells. We therefore concluded that charged amino acid residues (R45 and D84) in the AlaE transmembrane domain play a pivotal role in L-alanine export. Replacement of three cysteine residues at C22, C28 (both in TM-I), and C135 (C-terminal region) with alanine showed only a marginal effect on L-alanine export.


Asunto(s)
Alanina/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Arginina/metabolismo , Ácido Aspártico/metabolismo , Transporte Biológico , Cisteína/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutagénesis Sitio-Dirigida , Dominios Proteicos
20.
J Vet Med Sci ; 78(9): 1439-1445, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27246281

RESUMEN

Epigallocatechin gallate (EGCG) is the major polyphenolic compound of green tea. Polyphenolic compounds were extracted from the leaf of Camellia sinensis (Japanese green tea), and the minimum inhibitory concentration against canine oral bacteria was measured. Subsequently, we investigated the inhibitory effects of polyphenolic compounds and EGCG on the growth of canine oral bacteria. EGCG showed antimicrobial activity against a model bacterium, Streptococcus mutans. Our results indicate that EGCG can inhibit the growth and biofilm formation of S. mutans and that EGCG does not interact with streptococcal lipoteichoic acid (LTA). Furthermore, our findings suggest that EGCG interacts with other component(s) of the bacterial membrane aside from streptococcal LTA to inhibit biofilm formation and damage biofilms.


Asunto(s)
Antibacterianos/farmacología , Camellia sinensis/química , Catequina/farmacología , Microbiota/efectos de los fármacos , Boca/microbiología , Hojas de la Planta/química , , Animales , Biopelículas/efectos de los fármacos , Catequina/análogos & derivados , Perros , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Streptococcus mutans/efectos de los fármacos , Té/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...