Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ther Oncol ; 32(2): 200797, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38601972

RESUMEN

Acute myeloid leukemia (AML), a fast-progressing hematological malignancy affecting myeloid cells, is typically treated with chemotherapy or hematopoietic stem cell transplantation. However, approximately half of the patients face relapses and 5-year survival rates are poor. With the goal to facilitate dual-specificity, boosting anti-tumor activity, and minimizing the risk for antigen escape, this study focused on combining chimeric antigen receptor (CAR) and T cell receptor (TCR) technologies. CAR'TCR-T cells, co-expressing a CD33-CAR and a transgenic dNPM1-TCR, revealed increased and prolonged anti-tumor activity in vitro, particularly in case of low target antigen expression. The distinct transcriptomic profile suggested enhanced formation of immunological synapses, activation, and signaling. Complete elimination of AML xenografts in vivo was only achieved with a cell product containing CAR'TCR-T, CAR-T, and TCR-T cells, representing the outcome of co-transduction with two lentiviral vectors encoding either CAR or TCR. A mixture of CAR-T and TCR-T cells, without CAR'TCR-T cells, did not prevent progressive tumor outgrowth and was comparable to treatment with CAR-T and TCR-T cells individually. Overall, our data underscore the efficacy of co-expressing CAR and transgenic TCR in one T cell, and might open a novel therapeutic avenue not only for AML but also other malignancies.

2.
Mol Ther Methods Clin Dev ; 32(2): 101224, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38516690

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous malignancy that requires further therapeutic improvement, especially for the elderly and for subgroups with poor prognosis. A recently discovered T cell receptor (TCR) targeting mutant nucleophosmin 1 (ΔNPM1) presents an attractive option for the development of a cancer antigen-targeted cellular therapy. Manufacturing of TCR-modified T cells, however, is still limited by a complex, time-consuming, and laborious procedure. Therefore, this study specifically addressed the requirements for a scaled manufacture of ΔNPM1-specific T cells in an automated, closed, and good manufacturing practice-compliant process. Starting from cryopreserved leukapheresis, 2E8 CD8-positive T cells were enriched, activated, lentivirally transduced, expanded, and finally formulated. By adjusting and optimizing culture conditions, we additionally reduced the manufacturing time from 12 to 8 days while still achieving a clinically relevant yield of up to 5.5E9 ΔNPM1 TCR-engineered T cells. The cellular product mainly consisted of highly viable CD8-positive T cells with an early memory phenotype. ΔNPM1 TCR CD8 T cells manufactured with the optimized process showed specific killing of AML in vitro and in vivo. The process has been implemented in an upcoming phase 1/2 clinical trial for the treatment of NPM1-mutated AML.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...