Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
SLAS Technol ; 29(3): 100135, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703999

RESUMEN

Laboratory management automation is essential for achieving interoperability in the domain of experimental research and accelerating scientific discovery. The integration of resources and the sharing of knowledge across organisations enable scientific discoveries to be accelerated by increasing the productivity of laboratories, optimising funding efficiency, and addressing emerging global challenges. This paper presents a novel framework for digitalising and automating the administration of research laboratories through The World Avatar, an all-encompassing dynamic knowledge graph. This Digital Laboratory Framework serves as a flexible tool, enabling users to efficiently leverage data from diverse systems and formats without being confined to a specific software or protocol. Establishing dedicated ontologies and agents and combining them with technologies such as QR codes, RFID tags, and mobile apps, enabled us to develop modular applications that tackle some key challenges related to lab management. Here, we showcase an automated tracking and intervention system for explosive chemicals as well as an easy-to-use mobile application for asset management and information retrieval. Implementing these, we have achieved semantic linking of BIM and BMS data with laboratory inventory and chemical knowledge. Our approach can capture the crucial data points and reduce inventory processing time. All data provenance is recorded following the FAIR principles, ensuring its accessibility and interoperability.


Asunto(s)
Automatización de Laboratorios , Automatización de Laboratorios/métodos , Laboratorios , Almacenamiento y Recuperación de la Información/métodos
2.
Neurosurgery ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511941

RESUMEN

BACKGROUND AND OBJECTIVES: Hydrocephalus is characterized by progressive enlargement of cerebral ventricles, resulting in impaired microvasculature and cerebral hypoperfusion. This study aimed to demonstrate the microvascular changes in hydrocephalic rats and the effects of cerebrospinal fluid (CSF) release on cerebral blood flow (CBF). METHODS: On postnatal day 21 (P21), male Wistar rats were intracisternally injected with either a kaolin suspension or saline. On P47, Evan's ratio (ER) was measured using MRI. On P49, the arteriolar diameter and vascular density of the pia were quantified using a capillary video microscope. The CBF was measured using laser Doppler flowmetry. The expressions of NeuN and glial fibrillary acidic protein determined by immunochemical staining were correlated with the ER. The CBF and rotarod test performance were recorded before and after CSF release. The expressions of 4-hydroxynonenal (4-HNE) and c-caspase-3 were studied on P56. RESULTS: Ventriculomegaly was induced to varying degrees, resulting in the stretching and abnormal narrowing of pial arterioles, which regressed with increasing ER. Quantitative analysis revealed significant decreases in the arteriolar diameter and vascular density in the hydrocephalic group compared with those in the control group. In addition, the CBF in the hydrocephalic group decreased to 30%-50% of that in the control group. In hydrocephalus, the neurons appear distorted, and the expression of 4-HNE and reactive astrogliosis increase in the cortex. After CSF was released, improvements in the CBF and rotarod test performance were inversely associated with the ER. In addition, the levels of 4-HNE and c-caspase-3 were further elevated. CONCLUSION: Rapid ventricular dilatation is associated with severe microvascular distortion, vascular regression, cortical hypoperfusion, and cellular changes that impair the recovery of CBF and motor function after CSF release. Moreover, CSF release may induce reperfusion injury. This pathophysiology should be taken into account when treating hydrocephalus.

3.
Neurotherapeutics ; 21(2): e00312, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38177024

RESUMEN

Impaired cerebral microcirculation after subarachnoid hemorrhage (SAH) has been shown to be related to delayed ischemic neurological deficits (DIND). We previously demonstrated the involvement of the receptor for advanced glycation end products (RAGE) in the pathogenesis of SAH related neuronal death. In the present study, we aimed to investigate the therapeutic effects of a recombinant soluble form of RAGE (sRAGE) on microcirculation impairment following SAH. Intrathecal injection of autologous blood in rats, mixed primary astrocyte and microglia cultures exposed to hemolysates and endothelial cells â€‹(ECs) from human brain microvascular exposed to glia-conditioned medium or SAH patient's CSF were used as experimental SAH models in vivo and in vitro. The results indicated that intrathecal administration of recombinant sRAGE significantly ameliorated the vasoconstriction of cortical arterioles and associated perfusion impairment, brain edema, reduced cell death, endothelial dysfunction, and improved motor performance at 24 and 48 â€‹h after SAH induction in rats. The in vitro results further showed that recombinant sRAGE significantly reduced astrocyte swelling and microglia activation, in parallel with decreased mRNA expression levels of pro-inflammatory cytokines including interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) in vitro. Moreover, the in vitro model of SAH-induced p-eNOS and eNOS suppression, along with stress fiber formation in brain microvascular ECs, was effectively reversed by sRAGE treatment and led to a decrease in cleaved-caspase 3 expression. In summary, recombinant sRAGE effectively lessened microcirculation impairment and vascular injury after SAH via the mechanism of anti-inflammation, which may provide a potential therapeutic strategy for SAH.


Asunto(s)
Hemorragia Subaracnoidea , Ratas , Humanos , Animales , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/metabolismo , Ratas Sprague-Dawley , Enfermedades Neuroinflamatorias , Microcirculación , Células Endoteliales/metabolismo , Células Endoteliales/patología
4.
Mar Environ Res ; 192: 106240, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37944349

RESUMEN

Marine bivalves inhabiting intertidal and estuarine areas are frequently exposed to salinity stress due to persistent rainfall and drought. Through prolonged adaptive evolution, numerous bivalves have developed eurysalinity, which are capable of tolerating a wide range of salinity fluctuations through the sophisticated regulation of physiological metabolism. Current research has predominantly focused on investigating the physiological responses of bivalves to salinity stress, leaving a significant gap in our understanding of the adaptive evolutionary characteristics in euryhaline bivalves. Here, comparative genomics analyses were performed in two groups of bivalve species, including 7 euryhaline species and 5 stenohaline species. We identified 24 significantly expanded gene families and 659 positively selected genes in euryhaline bivalves. A significant co-expansion of solute carrier family 23 (SLC23) facilitates the transmembrane transport of ascorbic acids in euryhaline bivalves. Positive selection of antioxidant genes, such as GST and TXNRD, augments the capacity of active oxygen species (ROS) scavenging under salinity stress. Additionally, we found that the positively selected genes were significantly enriched in KEGG pathways associated with carbohydrates, lipids and amino acids metabolism (ALDH, ADH, and GLS), as well as GO terms related to transmembrane transport and inorganic anion transport (SLC22, CLCND, and VDCC). Positive selection of MCT might contribute to prevent excessive accumulation of intracellular lactic acids during anaerobic metabolism. Positive selection of PLA2 potentially promote the removal of damaged membranes lipids under salinity stress. Our findings suggest that adaptive evolution has occurred in osmoregulation, ROS scavenging, energy metabolism, and membrane lipids adjustments in euryhaline bivalves. This study enhances our understanding of the molecular mechanisms underlying the remarkable salinity adaption of euryhaline bivalves.


Asunto(s)
Adaptación Fisiológica , Osmorregulación , Especies Reactivas de Oxígeno , Osmorregulación/genética , Estrés Salino , Lípidos , Salinidad
5.
Mar Environ Res ; 192: 106198, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37757610

RESUMEN

Marine bivalves in intertidal zones and land-based seawater ponds are constantly subjected to a wide range of salinity fluctuations due to heavy rainfall, intense drought, and human activities. As osmoconformers, bivalves rely primarily on rapid release or accumulation of free amino acids (FAAs) for osmoregulation. Euryhaline bivalves are capable of withstanding hyposaline and hypersaline environments through regulation of physiology, metabolism, and gene expression. However, current understanding of the molecular mechanisms underlying osmoregulation and salinity adaptation in euryhaline bivalves remains largely limited. In this study, RNA-seq, WGCNA and flow cytometric analysis were performed to investigate the physiological responses of hard clams (Mercenaria mercenaria) to acute short-term hyposalinity (AL) and hypersalinity (AH), and chronic long-term hyposalinity (CL) and hypersalinity (CH) stress. We found that amino acids biosynthesis was significantly inhibited and aminoacyl-tRNA biosynthesis was augmented to decrease intracellular osmolarity during hyposaline exposure. Under CH, numerous autophagy-related genes (ATGs) were highly expressed, and the autophagy activity of gill cells were significantly up-regulated. A significant decrease in total FAAs content was observed in gills after NH4Cl treatment, indicating that autophagy was crucial for osmoregulation in hard clams during prolonged exposure to hypersaline environments. To prevent premature or unnecessary apoptosis, the expression of cathepsin L was inhibited under AL and AH, and inhibitors of apoptosis was augmented under CL and CH. Additionally, neuroendocrine regulation was involved in salinity adaption in hard clams. This study provides novel insights into the physiological responses of euryhaline marine bivalves to hyposaline and hypersaline environments.


Asunto(s)
Mercenaria , Animales , Humanos , Aminoácidos , Autofagia
6.
Fish Shellfish Immunol ; 141: 109084, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37722439

RESUMEN

Air exposure (AE) is a significant environmental stressor that can lead to desiccation, hypoxia, starvation, and disruption of cellular homeostasis in marine bivalves. Autophagy is a highly conserved catabolic pathway that facilitates the degradation of damaged macromolecules and organelles, thereby supporting cellular stress responses. To date, autophagy-mediated resistance mechanisms to AE stress remain largely elusive in bivalves. In this study, we performed a multi-tool approach to investigate the autophagy-related physiological regulation in hard clams (Mercenaria mercenaria) under different duration of AE (T = 0, 1, 5, 10, 20, 30 days). We observed that autophagy of haemocytes was significantly activated on day 5. However, autophagy activity began to significantly decline from day 10 to day 30. Autophagy was significantly inhibited after antioxidant treatment, indicating that reactive oxygen species (ROS) was an endogenous inducer of autophagy. A significant decline in the survival rate of hard clams was observed after injection of ammonium chloride or carbamazepine during AE stress, suggesting that moderate autophagy was conducive for clam survival under AE stress. We also observed DNA breaks and high levels of apoptosis in haemocytes on day 10. Activation of apoptosis lagged behind autophagy, and the relationship between autophagy and apoptosis might shift from antagonism to synergy with the duration of stress. This study provides novel insights into the stress resistance mechanisms in marine bivalves.


Asunto(s)
Mercenaria , Animales , Mercenaria/genética , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/fisiología , Antioxidantes/metabolismo , Homeostasis , Autofagia
8.
Artículo en Inglés | MEDLINE | ID: mdl-36709861

RESUMEN

Aquatic animals suffer from heat and hypoxia stress more frequently due to global climate change and other anthropogenic activities. Heat and hypoxia stress can significantly affect mitochondrial function and energy metabolism. Here, the response and adaptation characteristics of mitochondria and energy metabolism in the gill of the hard clam Mercenaria mercenaria under heat (35 °C), hypoxia (0.2 mg/L), and heat plus hypoxia stress (35 °C, 0.2 mg/L) after 48 h exposure were investigated. Mitochondrial membrane potentials were depolarized under environmental stress. Mitochondrial fusion, fission and mitophagy played a key role in maintain mitochondrion function. The AMPK subunits showed different expression under environmental stress. Acceleration of enzyme activities (phosphofructokinase, pyruvate kinase and lactic dehydrogenase) and accumulation of anaerobic metabolites in glycolysis and TCA cycle implied that the anaerobic metabolism might play a key role in providing energy. Accumulation of amino acids might help to increase tolerance under heat and heat combined hypoxia stress. In addition, urea cycle played a key role in amino acid metabolism to prevent ammonia/nitrogen toxicity. This study improved our understanding of the mitochondrial and energy metabolism responses of marine bivalves exposed to environmental stress.


Asunto(s)
Calor , Mercenaria , Animales , Branquias/metabolismo , Metabolismo Energético , Hipoxia/metabolismo , Mercenaria/metabolismo , Mitocondrias/metabolismo
9.
Arch Toxicol ; 97(2): 377-392, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36418572

RESUMEN

Vincristine (VCR), an effective antitumor drug, has been utilized in several polytherapy regimens for acute lymphoblastic leukemia, neuroblastoma and rhabdomyosarcoma. However, clinical evidence shows that the metabolism of VCR varies greatly among patients. The traditional based body surface area (BSA) administration method is prone to insufficient exposure to VCR or severe VCR-induced peripheral neurotoxicity (VIPN). Therefore, reliable strategies are urgently needed to improve efficacy and reduce VIPN. Due to the unpredictable pharmacokinetic changes of VCR, therapeutic drug monitoring (TDM) may help to ensure its efficacy and to manage VIPN. At present, there is a lot of supporting evidence for the suitability of applying TDM to VCR therapy. Based on the consensus guidelines drafted by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT), this review aimed to summarize various available data to evaluate the potential utility of VCR TDM for cancer patients. Of note, valuable evidence has accumulated on pharmacokinetics variability, pharmacodynamics, drug exposure-clinical response relationship, biomarkers for VIPN prediction, and assays for VCR monitoring. However, there are still many relevant clinical pharmacological questions that cannot yet be answered merely based on insufficient evidence. Currently, we cannot recommend a therapeutic exposure range and cannot yet provide a dose-adaptation strategy for clinicians and patients. In areas where the evidence is not yet sufficient, more research is needed in the future. The precision medicine of VCR cannot rely on TDM alone and needs to consider the clinical, environmental, genetic background and patient-specific factors as a whole.


Asunto(s)
Neuroblastoma , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Adulto , Vincristina/efectos adversos , Monitoreo de Drogas , Medicina de Precisión
10.
Transl Stroke Res ; 14(5): 688-703, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36181630

RESUMEN

Aneurysmal subarachnoid hemorrhage (SAH) can cause severe neurological deficits and high mortality. Early brain edema following SAH contributes to the initiation of microcirculation impairment and may further lead to delayed ischemic neurologic deficit (DIND). This study aimed to investigate whether dental pulp stem cell conditioned medium (DPSC-CM) ameliorates SAH-induced microcirculation impairment and the underlying mechanisms. SAH was induced via intrathecal injection of fresh autologous blood in Wistar male adult rat. DPSC-CM or DPSC-CM + insulin growth factor-1 (IGF-1) antibody was randomly administered by intrathecal route 5 min after SAH induction. To evaluate the underlying mechanisms of DPSC-CM in the treatment of SAH, primary rat astrocyte and microglia co-cultures were challenged with hemolysate or SAH-patient CSF in the presence or absence of DPSC-CM. The results showed that in vivo, DPSC-CM treatment decreased the brain water content, improved microcirculation impairment and enhanced functional recovery at 24 h post-SAH. DPSC-CM treatment also alleviated the expressions of water channel protein aquaporin-4 (AQP4) and pro-inflammatory cytokines, and enhanced the expressions of anti-inflammatory factors in the cortical region. However, all the beneficial effects of DPSC-CM were abrogated after treatment with IGF-1 neutralizing antibody. The in vitro results further showed that DPSC-CM treatment reduced hemolysate/SAH-patient CSF-induced astrocyte swelling and promoted M2 microglia polarization, partially through IGF-1/AKT signaling. The data suggested that DPSC-CM significantly reduced brain edema and rescued microcirculation impairment with concomitant anti-inflammatory benefits after SAH, and may potentially be developed into a novel therapeutic strategy for SAH.


Asunto(s)
Edema Encefálico , Hemorragia Subaracnoidea , Ratas , Masculino , Animales , Microglía , Ratas Wistar , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/tratamiento farmacológico , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Modelos Animales de Enfermedad , Edema Encefálico/metabolismo , Microcirculación , Astrocitos/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Factor I del Crecimiento Similar a la Insulina/uso terapéutico , Pulpa Dental/metabolismo , Antiinflamatorios/uso terapéutico , Células Madre
11.
Comput Struct Biotechnol J ; 20: 4110-4121, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36016713

RESUMEN

Hypo-salinity events frequently occur in marine ecosystem due to persistent rainfall and freshwater inflow, reducing the cytosol osmolarity and triggering cellular stress responses in aquatic organisms. Euryhaline bivalves have developed sophisticated regulatory mechanisms to adapt to salinity fluctuations over a long period of evolution. In this study, we performed multiple biochemical assays, widely targeted metabolomics, and gene expression analysis to investigate the comprehensive metabolic responses to hypo-salinity stress and osmoregulation mechanisms in hard clam Mercenaria mercenaria, which is a euryhaline bivalve species widely cultured in China. During hypo-salinity stress, increased vacuoles appeared in gill filaments. The Na+ and Cl- concentrations in gills significantly decreased because of the up-regulation of Na+/K+-ATPase (NKA) activity. The cAMP content dramatically decreased at 5 d post hypo-salinity stress. Meanwhile, the gene expression levels of adenylate cyclase, proteinkinase A, and sodium and calcium channel proteins were evidently down-regulated, suggesting that cAMP-PKA pathway was inhibited to prevent ambient inorganic ions from entering the gill cells. Antioxidant metabolites, such as serine and Tyr-containing dipeptides, were significantly up-regulated to resist oxidative stress. Glycerolipid metabolism was strengthened to stabilize membrane structure when hypo-salinity stress was prolonged to 5 days. At 1 d post hypo-salinity stress, an increase in alanine and lactate contents marked the initiation of anaerobic metabolism. Acylcarnitines accumulation indicated that fatty acids ß-oxidation was promoted to provide energy for osmoregulation. The potential biomarkers of hypo-salinity stress were identified in hard clams. This study provides novel insights into the metabolic regulatory mechanisms to hypo-salinity stress in euryhaline bivalves.

12.
Mar Environ Res ; 176: 105606, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35316650

RESUMEN

Mitogen-activated protein kinase kinase (MAPKK) was the hub component of the Mitogen-activated protein kinase (MAPK) signaling pathway and played an important role in the cellular response to environmental stress. In this study, we identified five MmMAPKK genes in hard clam Mercenaria mercenaria and found that all MmMAPKK genes contain a conserved protein kinase domain. The MmMAPKK genes derived from dispersed duplication were unevenly distributed in three chromosomes. Although the genome size was highly variable among different bivalve mollusks, the number of MAPKK genes was relatively stable. Phylogenetic analysis showed that bivalve MAPKK was divided into five clades, and amino acid sequences of MAPKK from the same clade consisted of similar conserved motifs. The syntenic analysis demonstrated that MmMAPKKs had the highest number of homologous gene pairs with Cyclina sinensis. MmMAPKKs were ubiquitously expressed in all examined tissues, and all MmMAPKK genes were highly expressed in the ovary. MmMAPKK genes showed stress-specific expression under envirionmental stress. MmMAPKK7 showed an upregulated in heat and heat plus hypoxia stress while MmMAPKK1 showed an upregulated in hypoxic stress groups. Dynamic changes of MmMAPKK7, MmMAPKK6 and MmMAPKK1 in hemocytes were observed in response to air exposure. MmMAPKK4 significantly downregulated after air exposure for five days. MmMAPKK7 and MmMAPKK6 might participate in adaptation to low salinity stress. Our results provided useful information about MAPKK and laid a foundation for further studies on MAPKK evolution in the bivalve.


Asunto(s)
Quinasas de Proteína Quinasa Activadas por Mitógenos , Estrés Fisiológico , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas , Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/química , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Filogenia , Estrés Fisiológico/genética
13.
Int. j. morphol ; 40(1): 233-241, feb. 2022. ilus
Artículo en Inglés | LILACS | ID: biblio-1385574

RESUMEN

SUMMARY: This study aims to investigate the effect of Tangzhouling on the morphological changes of Nissl bodies in the dorsal root ganglion of DM Rats. In this study, 69 rats were randomly divided into a control group (n = 10) and a model group (n = 59). The rats in the model group were randomly divided into a diabetic group (n = 11), a vitamin C group (n = 12), a low dose Tangzhouling group (n = 12), a medium dose Tangzhouling group (n = 12) and a high dose Tangzhouling group (n = 12). The dose of Tangzhouling in the low dose group was 5 times that of the adult dose, being 0.44g/kg/d. The dose of Tangzhouling in the medium dose group was 10 times that of the adult dose, being 0.88g/kg/d. The dose of Tangzhouling in the high dose group was 20 times that of the adult dose, being 1.75g/kg/d. All doses above are crude drug dosages. Rats in the vitamin C group were given 10 times the dose of an adult, being, 0.05 g/ kg/d. The diabetic group and the control group were given the same amount of distilled water. Drug delivery time is 16 weeks. The dorsal root ganglion was placed in a freezing tube at the end of the experiment. The morphological changes of Nissl bodies in the dorsal root ganglion were detected by HE and Nissl staining. The study results showed that vitamin C had no significant effect on the quantity, size and nucleolus. Tangzhouling can improvee the morphology, quantity and nucleolus of Nissl bodies to a certain extent, and the high dose is better than the lower dose. Tangzhouling capsules can improve the nerve function of DM rats through Nissl bodies.


RESUMEN: Este estudio tuvo como objetivo investigar el efecto de Tangzhouling en los cambios morfológicos de los cuerpos de Nissl en el ganglio de la raíz dorsal de las ratas DM. En este estudio, 69 ratas se dividieron aleatoriamente en un grupo control (n = 10) y un grupo modelo (n = 59). Las ratas del grupo modelo se dividieron aleatoriamente en un grupo diabéticos (n = 11), un grupo vitamina C (n = 12), un grupo de dosis baja de Tangzhouling (n = 12), un grupo de dosis media de Tangzhouling (n = 12) y un grupo de dosis alta de Tangzhouling (n = 12). La dosis de Tangzhouling en el grupo de dosis baja fue 5 veces mayor que la dosis del adulto, siendo 0,44 g/kg/d. La dosis de Tangzhouling en el grupo de dosis media fue 10 veces mayor que la dosis del adulto, siendo 0,88 g/kg/d. La dosis de Tangzhouling en el grupo de dosis alta fue 20 veces mayor que la dosis del adulto, siendo 1,75 g/kg/d. Todas las dosis anteriores son dosis de fármaco crudo. Se les administró 10 veces la dosis de un adulto a las ratas del grupo vitamina C, siendo 0,05 g/kg/d. El grupo de diabéticos y el grupo de control recibieron la misma cantidad de agua destilada. El tiempo de entrega del fármaco fue de 16 semanas. El ganglio de la raíz dorsal se colocó en un tubo de congelación al final del experimento. Los cambios morfológicos de los cuerpos de Nissl en el ganglio de la raíz dorsal se detectaron mediante tinción de HE y Nissl. Los resultados del estudio mostraron que la vitamina C no tuvo un efecto significativo sobre la cantidad, el tamaño y el nucléolo. Tangzhouling puede mejorar la morfología, la cantidad y el nucléolo de los cuerpos de Nissl hasta cierto punto, y es mejor la dosis alta que la dosis baja. Las cápsulas de Tangzhouling pueden mejorar la función nerviosa de las ratas DM a través de los cuerpos de Nissl.


Asunto(s)
Animales , Ratas , Enfermedades del Sistema Nervioso Periférico , Neuropatías Diabéticas , Ganglios Espinales/efectos de los fármacos , Cuerpos de Nissl/efectos de los fármacos , Coloración y Etiquetado , Modelos Animales de Enfermedad
14.
Sci Total Environ ; 809: 151172, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34710412

RESUMEN

In the context of global climatic changes, marine organisms have been exposed to environmental stressors including heat and hypoxia. This calls for the design of multi-stressors to uncover the impact of oceanic factors on aquatic organisms. So far, little is known about the metabolic response of marine organisms, especially bivalves, to the combined effects of heat and hypoxia. In this study, we employed widely targeted metabolomic analysis to study the metabolic response of gills in hard clam, a heat- and hypoxia-tolerant bivalve. A total of 810 metabolites were identified. Results showed that the heat group (HT) and heat plus hypoxia group (HL) had a higher number of differential metabolites than the hypoxia group (LO). Glycolysis was affected by the heat and heat plus hypoxia stress. Moreover, anaerobic metabolic biomarkers were accumulated marking the onset of anaerobic metabolism. Environmental stresses may affect Tricarboxylic acid (TCA) cycle. Accumulation of carnitine and glycerophospholipid may promote fatty acid ß oxidation and maintain cell membrane stability, respectively. The high content of oxidized lipids (i.e., Leukotriene) in HL and HT groups implied that the organisms were under ROS stress. The significantly differential metabolites of organic osmolytes and vitamins might relieve ROS stress. Moreover, accumulation of thermoprotective osmolytes (monosaccharide, Trimethylamine N-oxide (TMAO)) accumulation was helpful to maintain protein homeostasis. This investigation provided new insights into the adaptation mechanisms of hard clam to heat, hypoxia and combined stress at the metabolite level and highlighted the roles of molecules and protectants.


Asunto(s)
Mercenaria , Animales , Calor , Hipoxia , Metabolómica , Estrés Fisiológico
15.
Pharmgenomics Pers Med ; 15: 1029-1035, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605068

RESUMEN

Vincristine-induced peripheral neuropathy (VIPN) is a common adverse effect of vincristine (VCR) for which there is no preventative or curative treatment. Here, we report a case of a patient suffering from severe VCR-related neurotoxicity. To explore the possible causes of severe VIPN in this patient, a set of genes involved in VCR metabolism, transport or are related to the cytoskeleton, microtubules, and inherited neurological diseases gene polymorphisms were examined via pharmacogenetic analyses. The genotyping results revealed the presence of a complex pattern of polymorphisms in CYP3A5, ABCC2, SYNE2, BAHD1, NPSR1, MTNR1B, CEP72, miR-4481 and miR-3117. A comprehensive understanding of all the pharmacogenetic risk factors for VIPN may explain the occurrence of severe neurotoxicity in our patient. This case brings to light the potential importance of pharmacogenetic testing in clinical practice. It also exemplifies the importance of developing early-detection strategies to optimize treatment regimens through prior risk stratification while reducing adverse drug reactions and personalizing therapy.

16.
Front Pharmacol ; 12: 771487, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955843

RESUMEN

Vincristine (VCR) is the first-line chemotherapeutic medication often co-administered with other drugs to treat childhood acute lymphoblastic leukemia. Dose-dependent neurotoxicity is the main factor restricting VCR's clinical application. VCR-induced peripheral neuropathy (VIPN) sometimes results in dose reduction or omission, leading to clinical complications or affecting the patient's quality of life. With regard to the genetic basis of drug responses, preemptive pharmacogenomic testing and simultaneous blood level monitoring could be helpful for the transformation of various findings into individualized therapies. In this review, we discussed the potential associations between genetic variants in genes contributing to the pharmacokinetics/pharmacodynamics of VCR and VIPN incidence and severity in patients with acute lymphoblastic leukemia. Of note, genetic variants in the CEP72 gene have great potential to be translated into clinical practice. Such a genetic biomarker may help clinicians diagnose VIPN earlier. Besides, genetic variants in other genes, such as CYP3A5, ABCB1, ABCC1, ABCC2, TTPA, ACTG1, CAPG, SYNE2, SLC5A7, COCH, and MRPL47, have been reported to be associated with the VIPN, but more evidence is needed to validate the findings in the future. In fact, a variety of complex factors jointly determine the VIPN. In implementing precision medicine, the combination of genetic, environmental, and personal variables, along with therapeutic drug monitoring, will allow for a better understanding of the mechanisms of VIPN, improving the effectiveness of VCR treatment, reducing adverse reactions, and improving patients' quality of life.

17.
Mol Pharmacol ; 100(3): 224-236, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34210765

RESUMEN

Mounting evidence has revealed that despite the high degree of sequence homology between cytochrome P450 3A isoforms (i.e., CYP3A4 and CYP3A5), they have the propensities to exhibit vastly different irreversible and reversible interactions with a single substrate. We have previously established that benzbromarone (BBR), a potent uricosuric agent used in the management of gout, irreversibly inhibits CYP3A4 via mechanism-based inactivation (MBI). However, it remains unelucidated if CYP3A5-its highly homologous counterpart-is susceptible to inactivation by BBR. Using three structurally distinct probe substrates, we consistently demonstrated that MBI was not elicited in CYP3A5 by BBR. Our in silico covalent docking models and molecular dynamics simulations suggested that disparities in the susceptibilities toward MBI could be attributed to the specific effects of BBR covalent adducts on the F-F' loop. Serendipitously, we also discovered that BBR reversibly activated CYP3A5-mediated rivaroxaban hydroxylation wherein apparent V max increased and K m decreased with increasing BBR concentration. Fitting data to the two-site model yielded interaction factors α and ß of 0.44 and 5.88, respectively, thereby confirming heterotropic activation of CYP3A5 by BBR. Furthermore, heteroactivation was suppressed by the CYP3A inhibitor ketoconazole in a concentration-dependent manner and decreased with increasing preincubation time, implying that activation was incited via binding of parent BBR molecule within the enzymatic active site. Finally, noncovalent docking revealed that CYP3A5 can more favorably accommodate both BBR and rivaroxaban in concert as compared with CYP3A4, which further substantiated our experimental observations. SIGNIFICANCE STATEMENT: Although it has been previously demonstrated that benzbromarone (BBR) inactivates CYP3A4, it remains uninterrogated whether it also elicits mechanism-based inactivation in CYP3A5, which shares ∼85% sequence similarity with CYP3A4. This study reported that BBR exhibited differential irreversible and reversible interactions with both CYP3A isoforms and further unraveled the molecular determinants underpinning their diverging interactions. These data offer important insight into differential kinetic behavior of CYP3A4 and CYP3A5, which potentially contributes to interindividual variabilities in drug disposition.


Asunto(s)
Benzbromarona/química , Inhibidores del Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/química , Benzbromarona/metabolismo , Benzbromarona/farmacología , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/farmacología , Humanos , Hidroxilación/efectos de los fármacos , Hidroxilación/fisiología , Concentración 50 Inhibidora , Midazolam/metabolismo , Midazolam/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Rivaroxabán/metabolismo , Rivaroxabán/farmacología , Testosterona/metabolismo , Testosterona/farmacología
18.
Genomics ; 113(4): 2847-2859, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34153497

RESUMEN

Intertidal bivalves are constantly exposed to air due to daily and seasonal tidal cycles. The hard clam Mercenaria mercenaria is an economically important bivalve species and often subjected to air exposure for more than 10 days during long-distance transportation. Hard clam exhibits remarkable tolerance to air exposure. In this study, we performed RNA sequencing on hemocytes of M. mercenaria exposed to air for 0, 1, 5, 10, 20 and 30 days. The overall and dynamic molecular responses of hard clams to air exposure were revealed by different transcriptomic analysis strategies. As a result, most cytochrome P450 1A and 3A, and monocarboxylate transporter family members were up-regulated during air exposure. Additionally, the dominant molecular process in response to 5-d, 10-d, 20-d and 30-d air exposure was refolding of misfolded proteins in endoplasmic reticulum, lysosome-mediated degradation of phospholipids, protein metabolism and reorganization of cytoskeleton, and activation of anti-apoptotic process, respectively. Our results facilitated comprehensive understanding of the tolerance mechanisms of intertidal bivalves to air exposure.


Asunto(s)
Mercenaria , Animales , Perfilación de la Expresión Génica , Hemocitos , Mercenaria/genética , RNA-Seq , Análisis de Secuencia de ARN
19.
Neuropsychiatr Dis Treat ; 17: 1745-1750, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113105

RESUMEN

BACKGROUND: The aim of this study was to discuss the value of susceptibility-weighted imaging (SWI) in evaluating the ischemic penumbra of patients with acute cerebral ischemic stroke. METHODS: Data were collected from 52 patients with acute cerebral ischemic stroke upon clinical diagnosis and routine examinations of magnetic resonance imaging (MRI), including SWI, diffusion-weighted imaging (DWI), and perfusion-weighted imaging (PWI) within 72 hours after onset in this retrospective study. The methods also included fusing the DWI and SWI images and calculating the volume of anomaly extension of DWI and PWI-MTT (mean transit time) using semi-automatic analysis software. The SWI-DWI and PWI-DWI mismatches were interpreted, and the statistical analysis was completed. RESULTS: The two physicians found that the ischemic penumbra consistency is high throughout the SWI-DWI and PWI-DWI mismatches, without a significant difference (P > 0.05). CONCLUSION: SWI-DWI mismatch can prevent the injection of contrast agents and make an accurate diagnosis of acute stroke ischemic penumbra, which helps guide the selection of the clinical therapeutic plan.

20.
Medicine (Baltimore) ; 100(18): e25770, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33950967

RESUMEN

INTRODUCTION: CD30+ primary cutaneous anaplastic large cell lymphoma (PC-ALCL) is a rare T-cell neoplasm, and has been reported to present with an indolent behavior. The PC-ALCL with aggressive behavior has not been reported in the literature. PATIENT CONCERNS: We treated a patient with PC-ALCL that exhibited indolent behavior in the past 2 years and aggressive behavior within the last 3 months before presentation. DIAGNOSIS: Aggressive CD30+ primary cutaneous anaplastic large cell lymphoma. INTERVENTIONS: The radiotherapy regimen was individualized in terms of the target volume delineation and dose prescription, and the dose-response relationship was evaluated. OUTCOMES: The mean distance of microscopic infiltration was 14.1 mm in depth and 14.3 mm circumferentially. The lesion completely regressed after the delivery of 40 Gy in 20 fractions over 4 weeks. The tumor did not recur over the next year. CONCLUSION: An aggressive disease course is rare for indolent CD30+ PC-ALCL, which has similar histopathological characteristics as indolent PC-ALCL. The radiotherapy strategy should be individualized with curative intent.


Asunto(s)
Fraccionamiento de la Dosis de Radiación , Linfoma Anaplásico Cutáneo Primario de Células Grandes/radioterapia , Neoplasias Cutáneas/radioterapia , Piel/patología , Anciano de 80 o más Años , Humanos , Linfoma Anaplásico Cutáneo Primario de Células Grandes/diagnóstico , Linfoma Anaplásico Cutáneo Primario de Células Grandes/patología , Imagen por Resonancia Magnética , Masculino , Estadificación de Neoplasias , Dosificación Radioterapéutica , Piel/diagnóstico por imagen , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/patología , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA