Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(11): e21246, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37954281

RESUMEN

Deterioration of the environment can be examined by utilizing a statistical evaluation of the effects of anthropogenic activities (beneficial or detrimental) on net primary productivity. The Niger River Basin's net primary productivity is significant both theoretically and practically for the management of the natural environment. It is important for her member countries to understand vegetation dynamics, maintain carbon balance, and ensure food security in the region. The research applied remote sensing to determine the relative impact of human activities on the net primary productivity of the Niger River Basin from 2000 to 2020. The study simulated the actual and potential net primary productivity using the Carnegie Ames Stanford Approach and Thornthwaite's Memorial Model respectively, while the result of the simulations was used to calculate human-influenced net primary productivity. The slope of the three simulations was calculated and merged in several scenarios using ArcGIS 10.8 to determine the impact of human activities on net primary productivity of the study area. The negative impacts of human activities were recorded in 89.88 % of the investigated area, while 10.12 % of the NRB had signs of positive impacts. Amongst the biomes, urban areas and bare land experienced the largest negative impacts (97.2 % and 99.8 %, respectively). The study advised the effectiveness of ecological restoration programs, through sound scientific and technical methods, such as those used in rural development, nomadic herding, environmental protection, and natural resource management policies.

2.
Chemosphere ; 279: 130810, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34134431

RESUMEN

To improve the remediation efficiency of plants on low concentration uranium-bearing wastewater and clarify its strengthening mechanism, Syngonium podophyllum-Peperomia tetraphylla co-planting system was established, the enhanced effects of plants interaction on uranium removal were investigated, the chemical forms, valence states, and subcellular distribution of uranium in plants were confirmed, and the mechanisms of alleviating uranium stress by plants interaction were revealed. In Syngonium podophyllum-Peperomia tetraphylla co-planting system, the total amount of ethanol-extracted uranium and deionized water-extracted uranium with higher toxicity in their roots were reduced by 10.30% and 7.17%, respectively, which reduced the toxicity of uranium to plants. Plants interaction can inhibit the reduction of U(VI) in the root of Peperomia tetraphylla, which is conducive to the transport of uranium from roots to shoots. In addition, uranium in plants mainly existed in the cell wall (54.44%-66.52%) and the soluble fraction (23.85%-32.89%). These results indicated that Syngonium podophyllum and Peperomia tetraphylla co-planting can enhance their effects of uranium removal by alleviating uranium stress with the cell wall immobilization and vacuole compartmentation, improving biomass of plants, increasing bioaccumulation factor and translocation factor of uranium.


Asunto(s)
Peperomia , Podophyllum , Uranio , Biodegradación Ambiental , Uranio/análisis , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA