Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260259

RESUMEN

Although the importance of Notch signaling in brain development is well-known, its specific contribution to cellular reprogramming remains less defined. Here, we use microRNA-induced neurons that are directly reprogrammed from human fibroblasts to determine how Notch signaling contributes to neuronal identity. We found that inhibiting Notch signaling led to an increase in neurite extension, while activating Notch signaling had the opposite effect. Surprisingly, Notch inhibition during the first week of reprogramming was both necessary and sufficient to enhance neurite outgrowth at a later timepoint. This timeframe is when the reprogramming miRNAs, miR-9/9* and miR-124, primarily induce a post-mitotic state and erase fibroblast identity. Accordingly, transcriptomic analysis showed that the effect of Notch inhibition was likely due to improvements in fibroblast fate erasure and silencing of anti-neuronal genes. To this effect, we identify MYLIP , whose downregulation in response to Notch inhibition significantly promoted neurite outgrowth. Moreover, Notch inhibition resulted in cells with neuronal transcriptome signature defined by expressing long genes at a faster rate than the control, demonstrating the effect of accelerated fate erasure on neuronal fate acquisition. Our results demonstrate the critical role of Notch signaling in mediating morphological changes in miRNA-based neuronal reprogramming of human adult fibroblasts.

2.
Nat Aging ; 4(1): 95-109, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38066314

RESUMEN

Aging is a common risk factor in neurodegenerative disorders. Investigating neuronal aging in an isogenic background stands to facilitate analysis of the interplay between neuronal aging and neurodegeneration. Here we perform direct neuronal reprogramming of longitudinally collected human fibroblasts to reveal genetic pathways altered at different ages. Comparative transcriptome analysis of longitudinally aged striatal medium spiny neurons (MSNs) in Huntington's disease identified pathways involving RCAN1, a negative regulator of calcineurin. Notably, RCAN1 protein increased with age in reprogrammed MSNs as well as in human postmortem striatum and RCAN1 knockdown rescued patient-derived MSNs of Huntington's disease from degeneration. RCAN1 knockdown enhanced chromatin accessibility of genes involved in longevity and autophagy, mediated through enhanced calcineurin activity, leading to TFEB's nuclear localization by dephosphorylation. Furthermore, G2-115, an analog of glibenclamide with autophagy-enhancing activities, reduced the RCAN1-calcineurin interaction, phenocopying the effect of RCAN1 knockdown. Our results demonstrate that targeting RCAN1 genetically or pharmacologically can increase neuronal resilience in Huntington's disease.


Asunto(s)
Calcineurina , Enfermedad de Huntington , Humanos , Anciano , Calcineurina/genética , Enfermedad de Huntington/genética , Envejecimiento/genética , Factores de Transcripción/metabolismo , Cuerpo Estriado/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Musculares/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo
3.
bioRxiv ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37745577

RESUMEN

Huntington disease (HD) is an incurable neurodegenerative disease characterized by neuronal loss and astrogliosis. One hallmark of HD is the selective neuronal vulnerability of striatal medium spiny neurons. To date, the underlying mechanisms of this selective vulnerability have not been fully defined. Here, we employed a multi-omic approach including single nucleus RNAseq (snRNAseq), bulk RNAseq, lipidomics, HTT gene CAG repeat length measurements, and multiplexed immunofluorescence on post-mortem brain tissue from multiple brain regions of HD and control donors. We defined a signature of genes that is driven by CAG repeat length and found it enriched in astrocytic and microglial genes. Moreover, weighted gene correlation network analysis showed loss of connectivity of astrocytic and microglial modules in HD and identified modules that correlated with CAG-repeat length which further implicated inflammatory pathways and metabolism. We performed lipidomic analysis of HD and control brains and identified several lipid species that correlate with HD grade, including ceramides and very long chain fatty acids. Integration of lipidomics and bulk transcriptomics identified a consensus gene signature that correlates with HD grade and HD lipidomic abnormalities and implicated the unfolded protein response pathway. Because astrocytes are critical for brain lipid metabolism and play important roles in regulating inflammation, we analyzed our snRNAseq dataset with an emphasis on astrocyte pathology. We found two main astrocyte types that spanned multiple brain regions; these types correspond to protoplasmic astrocytes, and fibrous-like - CD44-positive, astrocytes. HD pathology was differentially associated with these cell types in a region-specific manner. One protoplasmic astrocyte cluster showed high expression of metallothionein genes, the depletion of this cluster positively correlated with the depletion of vulnerable medium spiny neurons in the caudate nucleus. We confirmed that metallothioneins were increased in cingulate HD astrocytes but were unchanged or even decreased in caudate astrocytes. We combined existing genome-wide association studies (GWAS) with a GWA study conducted on HD patients from the original Venezuelan cohort and identified a single-nucleotide polymorphism in the metallothionein gene locus associated with delayed age of onset. Functional studies found that metallothionein overexpressing astrocytes are better able to buffer glutamate and were neuroprotective of patient-derived directly reprogrammed HD MSNs as well as against rotenone-induced neuronal death in vitro. Finally, we found that metallothionein-overexpressing astrocytes increased the phagocytic activity of microglia in vitro and increased the expression of genes involved in fatty acid binding. Together, we identified an astrocytic phenotype that is regionally-enriched in less vulnerable brain regions that can be leveraged to protect neurons in HD.

4.
bioRxiv ; 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37292658

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder that primarily affects elderly individuals, and is characterized by hallmark neuronal pathologies including extracellular amyloid-ß (Aß) plaque deposition, intracellular tau tangles, and neuronal death. However, recapitulating these age-associated neuronal pathologies in patient-derived neurons has remained a significant challenge, especially for late-onset AD (LOAD), the most common form of the disorder. Here, we applied the high efficiency microRNA-mediated direct neuronal reprogramming of fibroblasts from AD patients to generate cortical neurons in three-dimensional (3D) Matrigel and self-assembled neuronal spheroids. Our findings indicate that neurons and spheroids reprogrammed from both autosomal dominant AD (ADAD) and LOAD patients exhibited AD-like phenotypes linked to neurons, including extracellular Aß deposition, dystrophic neurites with hyperphosphorylated, K63-ubiquitin-positive, seed-competent tau, and spontaneous neuronal death in culture. Moreover, treatment with ß- or γ-secretase inhibitors in LOAD patient-derived neurons and spheroids before Aß deposit formation significantly lowered Aß deposition, as well as tauopathy and neurodegeneration. However, the same treatment after the cells already formed Aß deposits only had a mild effect. Additionally, inhibiting the synthesis of age-associated retrotransposable elements (RTEs) by treating LOAD neurons and spheroids with the reverse transcriptase inhibitor, lamivudine, alleviated AD neuropathology. Overall, our results demonstrate that direct neuronal reprogramming of AD patient fibroblasts in a 3D environment can capture age-related neuropathology and reflect the interplay between Aß accumulation, tau dysregulation, and neuronal death. Moreover, miRNA-based 3D neuronal conversion provides a human-relevant AD model that can be used to identify compounds that can potentially ameliorate AD-associated pathologies and neurodegeneration.

5.
Res Sq ; 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37214956

RESUMEN

Aging is a common risk factor in neurodegenerative disorders and the ability to investigate aging of neurons in an isogenic background would facilitate discovering the interplay between neuronal aging and onset of neurodegeneration. Here, we perform direct neuronal reprogramming of longitudinally collected human fibroblasts to reveal genetic pathways altered at different ages. Comparative transcriptome analysis of longitudinally aged striatal medium spiny neurons (MSNs), a primary neuronal subtype affected in Huntington's disease (HD), identified pathways associated with RCAN1, a negative regulator of calcineurin. Notably, RCAN1 undergoes age-dependent increase at the protein level detected in reprogrammed MSNs as well as in human postmortem striatum. In patient-derived MSNs of adult-onset HD (HD-MSNs), counteracting RCAN1 by gene knockdown (KD) rescued HD-MSNs from degeneration. The protective effect of RCAN1 KD was associated with enhanced chromatin accessibility of genes involved in longevity and autophagy, mediated through enhanced calcineurin activity, which in turn dephosphorylates and promotes nuclear localization of TFEB transcription factor. Furthermore, we reveal that G2-115 compound, an analog of glibenclamide with autophagy-enhancing activities, reduces the RCAN1-Calcineurin interaction, phenocopying the effect of RCAN1 KD. Our results demonstrate that RCAN1 is a potential genetic or pharmacological target whose reduction-of-function increases neuronal resilience to neurodegeneration in HD through chromatin reconfiguration.

6.
Autophagy ; 19(9): 2613-2615, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36727408

RESUMEN

Huntington disease (HD) is an inherited neurodegenerative disease with adult-onset clinical symptoms. However, the mechanism by which aging triggers the onset of neurodegeneration in HD patients remains unclear. Modeling the age-dependent progression of HD with striatal medium spiny neurons (MSNs) generated by direct reprogramming of fibroblasts from HD patients at different disease stages identifies age-dependent decline in critical cellular functions such as autophagy/macroautophagy and onset of neurodegeneration. Mechanistically, MSNs derived from symptomatic HD patients (HD-MSNs) are characterized by increased chromatin accessibility proximal to the MIR29B-3p host gene and its upregulation compared to MSNs from younger pre-symptomatic patients. MIR29B-3p in turn targets and represses STAT3 (signal transducer and activator of transcription 3) that controls the biogenesis of autophagosomes, leading to HD-MSN degeneration. Our recent study demonstrates age-associated microRNA (miRNA) and autophagy dysregulation linked to MSN degeneration, and potential approaches for protecting MSNs by enhancing autophagy in HD.Abbreviations: HD: Huntington disease; mHTT: mutant HTT; MIR9/9*-124: MIR9/9* and MIR124; miRNA: microRNA; MSN: medium spiny neuron; STAT3: signal transducer and activator of transcription 3.


Asunto(s)
Enfermedad de Huntington , MicroARNs , Enfermedades Neurodegenerativas , Humanos , Animales , Enfermedad de Huntington/genética , Factor de Transcripción STAT3 , Autofagia/genética , MicroARNs/genética , Cuerpo Estriado , Modelos Animales de Enfermedad , Proteína Huntingtina/genética
7.
Carbohydr Res ; 524: 108741, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36716692

RESUMEN

Potential of Mean Force Ramachandran energy maps in aqueous solution have been prepared for all of the glycosidic linkages found in the C1576 exopolysaccharide from the biofilms of the bacterial species Burkholderia multivorans, a member of the Burkholderia cepacian complex that was isolated from a cystic fibrosis patient. C1576 is a rhamnomannan with a tetrasaccharide repeat unit. In general, for the four linkage types in this polymer, hydration did not produce dramatic changes in the Ramachandran energy surfaces, with the 3-methyl-α-d-rhamnopyranose-(1→3)-α-d-rhamnopyranose case exhibiting the greatest hydration change, with the global minimum energy conformation shifting by more than 80° in ψ. However, hydration did reduce the rigidity of all the linkages, increasing the overall flexibility of this polysaccharide.


Asunto(s)
Burkholderia , Disacáridos , Humanos , Conformación Molecular , Biopelículas
8.
Nat Neurosci ; 25(11): 1420-1433, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36303071

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disorder with adult-onset clinical symptoms, but the mechanism by which aging drives the onset of neurodegeneration in patients with HD remains unclear. In this study we examined striatal medium spiny neurons (MSNs) directly reprogrammed from fibroblasts of patients with HD to model the age-dependent onset of pathology. We found that pronounced neuronal death occurred selectively in reprogrammed MSNs from symptomatic patients with HD (HD-MSNs) compared to MSNs derived from younger, pre-symptomatic patients (pre-HD-MSNs) and control MSNs from age-matched healthy individuals. We observed age-associated alterations in chromatin accessibility between HD-MSNs and pre-HD-MSNs and identified miR-29b-3p, whose age-associated upregulation promotes HD-MSN degeneration by impairing autophagic function through human-specific targeting of the STAT3 3' untranslated region. Reducing miR-29b-3p or chemically promoting autophagy increased the resilience of HD-MSNs against neurodegeneration. Our results demonstrate miRNA upregulation with aging in HD as a detrimental process driving MSN degeneration and potential approaches for enhancing autophagy and resilience of HD-MSNs.


Asunto(s)
Enfermedad de Huntington , MicroARNs , Humanos , Animales , Enfermedad de Huntington/patología , Cuerpo Estriado/fisiología , Neuronas/fisiología , Autofagia , MicroARNs/genética , Progresión de la Enfermedad , Modelos Animales de Enfermedad
9.
Cell Stem Cell ; 29(6): 918-932.e8, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35659876

RESUMEN

Tau is a microtubule-binding protein expressed in neurons, and the equal ratios between 4-repeat (4R) and 3-repeat (3R) isoforms are maintained in normal adult brain function. Dysregulation of 3R:4R ratio causes tauopathy, and human neurons that recapitulate tau isoforms in health and disease will provide a platform for elucidating pathogenic processes involving tau pathology. We carried out extensive characterizations of tau isoforms expressed in human neurons derived by microRNA-induced neuronal reprogramming of adult fibroblasts. Transcript and protein analyses showed that miR neurons expressed all six isoforms with the 3R:4R isoform ratio equivalent to that detected in human adult brains. Also, miR neurons derived from familial tauopathy patients with a 3R:4R ratio altering mutation showed increased 4R tau and the formation of insoluble tau with seeding activity. Our results collectively demonstrate the utility of miRNA-induced neuronal reprogramming to recapitulate endogenous tau regulation comparable with the adult brain in health and disease.


Asunto(s)
MicroARNs , Tauopatías , Adulto , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Isoformas de Proteínas/metabolismo , Tauopatías/metabolismo , Tauopatías/patología , Proteínas tau/metabolismo
10.
Neuron ; 109(20): 3233-3235, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34672981

RESUMEN

In this issue of Neuron, Amin et al. (2021) generate genetic tools to titrate down levels of miR-218, a motor neuron-enriched microRNA, in vivo. Varying miR-218 dose alters target selection, results in distinct dose-response curves reflecting 3' UTR features, and reveals a miR-218 threshold below which motor neuron deficits emerge.


Asunto(s)
MicroARNs , Trastornos Motores , Regiones no Traducidas 3' , Humanos , MicroARNs/genética , Neuronas Motoras
11.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34031238

RESUMEN

Neuron-enriched microRNAs (miRNAs), miR-9/9* and miR-124 (miR-9/9*-124), direct cell fate switching of human fibroblasts to neurons when ectopically expressed by repressing antineurogenic genes. How these miRNAs function after the repression of fibroblast genes for neuronal fate remains unclear. Here, we identified targets of miR-9/9*-124 as reprogramming cells activate the neuronal program and reveal the role of miR-124 that directly promotes the expression of its target genes associated with neuronal development and function. The mode of miR-124 as a positive regulator is determined by the binding of both AGO and a neuron-enriched RNA-binding protein, ELAVL3, to target transcripts. Although existing literature indicates that miRNA-ELAVL family protein interaction can result in either target gene up-regulation or down-regulation in a context-dependent manner, we specifically identified neuronal ELAVL3 as the driver for miR-124 target gene up-regulation in neurons. In primary human neurons, repressing miR-124 and ELAVL3 led to the down-regulation of genes involved in neuronal function and process outgrowth and cellular phenotypes of reduced inward currents and neurite outgrowth. Our results highlight the synergistic role between miR-124 and RNA-binding proteins to promote target gene regulation and neuronal function.


Asunto(s)
Proteína 3 Similar a ELAV/biosíntesis , Regulación de la Expresión Génica , MicroARNs/metabolismo , Neuronas/metabolismo , Adulto , Proteína 3 Similar a ELAV/genética , Femenino , Humanos , MicroARNs/genética
12.
Cell Stem Cell ; 28(1): 127-140.e9, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32961143

RESUMEN

Cell-fate conversion generally requires reprogramming effectors to both introduce fate programs of the target cell type and erase the identity of starting cell population. Here, we reveal insights into the activity of microRNAs miR-9/9∗ and miR-124 (miR-9/9∗-124) as reprogramming agents that orchestrate direct conversion of human fibroblasts into motor neurons by first eradicating fibroblast identity and promoting uniform transition to a neuronal state in sequence. We identify KLF-family transcription factors as direct target genes for miR-9/9∗-124 and show their repression is critical for erasing fibroblast fate. Subsequent gain of neuronal identity requires upregulation of a small nuclear RNA, RN7SK, which induces accessibilities of chromatin regions and neuronal gene activation to push cells to a neuronal state. Our study defines deterministic components in the microRNA-mediated reprogramming cascade.


Asunto(s)
MicroARNs , Diferenciación Celular , Reprogramación Celular/genética , Cromatina , Fibroblastos , Humanos , MicroARNs/genética , Factores de Transcripción/genética
13.
Methods Mol Biol ; 2239: 77-100, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33226614

RESUMEN

MicroRNAs (miRNAs), miR-9/9*, and miR-124 (miR-9/9*-124) display fate-reprogramming activities when ectopically expressed in human fibroblasts by erasing the fibroblast identity and evoking a pan-neuronal state. In contrast to induced pluripotent stem cell-derived neurons, miRNA-induced neurons (miNs) retain the biological age of the starting fibroblasts through direct fate conversion and thus provide a human neuron-based platform to study cellular properties inherent in aged neurons and model adult-onset neurodegenerative disorders using patient-derived cells. Furthermore, expression of neuronal subtype-specific transcription factors in conjunction with miR-9/9*-124 guides the miNs to distinct neuronal fates, a feature critical for modeling disorders that affect specific neuronal subtypes. Here, we describe the miR-9/9*-124-based neuronal reprogramming protocols for the generation of several disease-relevant neuronal subtypes: striatal medium spiny neurons, cortical neurons, and spinal cord motor neurons.


Asunto(s)
Reprogramación Celular/genética , MicroARNs/metabolismo , Neuronas Motoras/citología , Neurogénesis/genética , Factores de Transcripción/metabolismo , Línea Celular , Células Cultivadas , Senescencia Celular/genética , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Medios de Cultivo/química , Fibroblastos/citología , Fibroblastos/metabolismo , Vectores Genéticos , Humanos , Lentivirus/genética , MicroARNs/genética , Neuronas Motoras/metabolismo , Neuronas/citología , Neuronas/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Factores de Transcripción/genética
14.
Cells ; 10(1)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375083

RESUMEN

The common marmoset (Callithrix jacchus) has attracted considerable attention, especially in the biomedical science and neuroscience research fields, because of its potential to recapitulate the complex and multidimensional phenotypes of human diseases, and several neurodegenerative transgenic models have been reported. However, there remain several issues as (i) it takes years to generate late-onset disease models, and (ii) the onset age and severity of phenotypes can vary among individuals due to differences in genetic background. In the present study, we established an efficient and rapid direct neuronal induction method (induced neurons; iNs) from embryonic and adult marmoset fibroblasts to investigate cellular-level phenotypes in the marmoset brain in vitro. We overexpressed reprogramming effectors, i.e., microRNA-9/9*, microRNA-124, and Achaete-Scute family bHLH transcription factor 1, in fibroblasts with a small molecule cocktail that facilitates neuronal induction. The resultant iNs from embryonic and adult marmoset fibroblasts showed neuronal characteristics within two weeks, including neuron-specific gene expression and spontaneous neuronal activity. As directly reprogrammed neurons have been shown to model neurodegenerative disorders, the neuronal reprogramming of marmoset fibroblasts may offer new tools for investigating neurological phenotypes associated with disease progression in non-human primate neurological disease models.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Reprogramación Celular , Modelos Animales de Enfermedad , MicroARNs , Enfermedades del Sistema Nervioso/metabolismo , Neuronas/metabolismo , Animales , Callithrix , Células Cultivadas , Fibroblastos
15.
Elife ; 92020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33074106

RESUMEN

Charcot-Marie-Tooth disease type 2A (CMT2A) is an untreatable childhood peripheral neuropathy caused by mutations of the mitochondrial fusion protein, mitofusin (MFN) 2. Here, pharmacological activation of endogenous normal mitofusins overcame dominant inhibitory effects of CMT2A mutants in reprogrammed human patient motor neurons, reversing hallmark mitochondrial stasis and fragmentation independent of causal MFN2 mutation. In mice expressing human MFN2 T105M, intermittent mitofusin activation with a small molecule, MiM111, normalized CMT2A neuromuscular dysfunction, reversed pre-treatment axon and skeletal myocyte atrophy, and enhanced axon regrowth by increasing mitochondrial transport within peripheral axons and promoting in vivo mitochondrial localization to neuromuscular junctional synapses. MiM111-treated MFN2 T105M mouse neurons exhibited accelerated primary outgrowth and greater post-axotomy regrowth, linked to enhanced mitochondrial motility. MiM111 is the first pre-clinical candidate for CMT2A.


Charcot-Marie-Tooth disease type 2A is a rare genetic childhood disease where dying back of nerve cells leads to muscle loss in the arms and legs, causing permanent disability. There is no known treatment. In this form of CMT, mutations in a protein called mitofusin 2 damage structures inside cells known as mitochondria. Mitochondria generate most of the chemical energy to power a cell, but when mitofusin 2 is mutated, the mitochondria are less healthy and are unable to move within the cell, depriving the cells of energy. This particularly causes problems in the long nerve cells that stretch from the spinal cord to the arm and leg muscles. Now, Franco, Dang et al. wanted to see whether re-activating mitofusin 2 could correct the damage to the mitochondria and restore the nerve connections to the muscles. The researchers tested a new class of drug called a mitofusin activator on nerve cells grown in the laboratory after being taken from people suffering from CMT2A, and also from a mouse model of the disease. Mitofusin activators improved the structure, fitness and movement of mitochondria in both human and mice nerve cells. Franco, Dang et al. then tested the drug in the mice with a CMT2A mutation and found that it could also stimulate nerves to regrow and so reverse muscle loss and weakness. This is the first time scientists have succeeded to reverse the effects of CMT2A in nerve cells of mice and humans. However, these drugs will still need to go through extensive testing in clinical trials before being made widely available to patients. If approved, mitofusin activators may also be beneficial for patients suffering from other genetic conditions that damage mitochondria.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas Mitocondriales/metabolismo , Unión Neuromuscular/metabolismo , Animales , Axones/metabolismo , Axones/fisiología , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Femenino , GTP Fosfohidrolasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/fisiología , Proteínas Mitocondriales/genética , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Células Musculares/metabolismo , Células Musculares/fisiología , Mutación/genética , Unión Neuromuscular/fisiología
17.
Cells ; 9(3)2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106535

RESUMEN

Obtaining differentiated cells with high physiological functions by an efficient, but simple and rapid differentiation method is crucial for modeling neuronal diseases in vitro using human pluripotent stem cells (hPSCs). Currently, methods involving the transient expression of one or a couple of transcription factors have been established as techniques for inducing neuronal differentiation in a rapid, single step. It has also been reported that microRNAs can function as reprogramming effectors for directly reprogramming human dermal fibroblasts to neurons. In this study, we tested the effect of adding neuronal microRNAs, miRNA-9/9*, and miR-124 (miR-9/9*-124), for the neuronal induction method of hPSCs using Tet-On-driven expression of the Neurogenin2 gene (Ngn2), a proneural factor. While it has been established that Ngn2 can facilitate differentiation from pluripotent stem cells into neurons with high purity due to its neurogenic effect, a long or indefinite time is required for neuronal maturation with Ngn2 misexpression alone. With the present method, the cells maintained a high neuronal differentiation rate while exhibiting increased gene expression of neuronal maturation markers, spontaneous calcium oscillation, and high electrical activity with network bursts as assessed by a multipoint electrode system. Moreover, when applying this method to iPSCs from Alzheimer's disease (AD) patients with presenilin-1 (PS1) or presenilin-2 (PS2) mutations, cellular phenotypes such as increased amount of extracellular secretion of amyloid ß42, abnormal oxygen consumption, and increased reactive oxygen species in the cells were observed in a shorter culture period than those previously reported. Therefore, it is strongly anticipated that the induction method combining Ngn2 and miR-9/9*-124 will enable more rapid and simple screening for various types of neuronal disease phenotypes and promote drug discovery.


Asunto(s)
MicroARNs/metabolismo , Enfermedades del Sistema Nervioso/genética , Neurogénesis/fisiología , Neuronas/metabolismo , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Humanos , Neuronas/citología , Fenotipo , Transfección
18.
Neuron ; 105(5): 813-821.e6, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31899071

RESUMEN

Despite being an autosomal dominant disorder caused by a known coding mutation in the gene HTT, Huntington's disease (HD) patients with similar trinucleotide repeat mutations can have an age of onset that varies by decades. One likely contributing factor is the genetic heterogeneity of patients that might modify their vulnerability to disease. We report that although the heterozygous depletion of the autophagy adaptor protein Alfy/Wdfy3 has no consequence in control mice, it significantly accelerates age of onset and progression of HD pathogenesis. Alfy is required in the adult brain for the autophagy-dependent clearance of proteinaceous deposits, and its depletion in mice and neurons derived from patient fibroblasts accelerates the aberrant accumulation of this pathological hallmark shared across adult-onset neurodegenerative diseases. These findings indicate that selectively compromising the ability to eliminate aggregated proteins is a pathogenic driver, and the selective elimination of aggregates may confer disease resistance.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Relacionadas con la Autofagia/genética , Enfermedad de Huntington/genética , Macroautofagia/genética , Neuronas/metabolismo , Agregación Patológica de Proteínas/genética , Edad de Inicio , Animales , Muerte Celular/genética , Modelos Animales de Enfermedad , Femenino , Fibroblastos , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/fisiopatología , Masculino , Ratones , Ratones Noqueados , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/fisiopatología
19.
Cell Stem Cell ; 25(2): 165-166, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374193

RESUMEN

An example of the peer review process for "Mir-17∼92 Confers Differential Vulnerability of Motor Neuron Subtypes to ALS-Associated Degeneration" (Tung et al., 2019) is presented here.


Asunto(s)
Esclerosis Amiotrófica Lateral , MicroARNs , Humanos , Neuronas Motoras
20.
Front Neurosci ; 12: 522, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30116172

RESUMEN

The use of transcriptional factors as cell fate regulators are often the primary focus in the direct reprogramming of somatic cells into neurons. However, in human adult fibroblasts, deriving functionally mature neurons with high efficiency requires additional neurogenic factors such as microRNAs (miRNAs) to evoke a neuronal state permissive to transcription factors to exert their reprogramming activities. As such, increasing evidence suggests brain-enriched miRNAs, miR-9/9∗ and miR-124, as potent neurogenic molecules through simultaneously targeting of anti-neurogenic effectors while allowing additional transcription factors to generate specific subtypes of human neurons. In this review, we will focus on methods that utilize neuronal miRNAs and provide mechanistic insights by which neuronal miRNAs, in synergism with brain-region specific transcription factors, drive the conversion of human fibroblasts into clinically relevant subtypes of neurons. Furthermore, we will provide insights into the age signature of directly converted neurons and how the converted human neurons can be utilized to model late-onset neurodegenerative disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...