Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 21: 563-573, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36659921

RESUMEN

Adaptive laboratory evolution (ALE) has long been used as the tool of choice for microbial engineering applications, ranging from the production of commodity chemicals to the innovation of complex phenotypes. With the advent of systems and synthetic biology, the ALE experimental design has become increasingly sophisticated. For instance, implementation of in silico metabolic model reconstruction and advanced synthetic biology tools have facilitated the effective coupling of desired traits to adaptive phenotypes. Furthermore, various multi-omic tools now enable in-depth analysis of cellular states, providing a comprehensive understanding of the biology of even the most genomically perturbed systems. Emerging machine learning approaches would assist in streamlining the interpretation of massive and multiplexed datasets and promoting our understanding of complexity in biology. This review covers some of the representative case studies among the 700 independent ALE studies reported to date, outlining key ideas, principles, and important mechanisms underlying ALE designs in bioproduction and synthetic cell engineering, with evidence from literatures to aid comprehension.

2.
Comput Struct Biotechnol J ; 19: 2468-2476, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025937

RESUMEN

The market for using and storing digital data is growing, with DNA synthesis emerging as an efficient way to store massive amounts of data. Storing information in DNA mainly consists of two steps: data writing and reading. The writing step requires encoding data in DNA, building one nucleotide at a time as a form of single-stranded DNA (ssDNA). Once the data needs to be read, the target DNA is selectively retrieved and sequenced, which will also be in the form of an ssDNA. Recently, enzyme-based DNA synthesis is emerging as a new method to be a breakthrough on behalf of decades-old chemical synthesis. A few enzymatic methods have been presented for data memory, including the use of terminal deoxynucleotidyl transferase. Besides, enzyme-based amplification or denaturation of the target strand into ssDNA provides selective access to the desired dataset. In this review, we summarize diverse enzymatic methods for either synthesizing ssDNA or retrieving the data-containing DNA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...