Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(3): e3002549, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38502638

RESUMEN

Sugar metabolism plays a pivotal role in sustaining life. Its dynamics within organisms is less understood compared to its intracellular metabolism. Galactose, a hexose stereoisomer of glucose, is a monosaccharide transported via the same transporters with glucose. Galactose feeds into glycolysis and regulates protein glycosylation. Defects in galactose metabolism are lethal for animals. Here, by transgenically implementing the yeast galactose sensing system into Drosophila, we developed a genetically encoded sensor, GALDAR, which detects galactose in vivo. Using this heterologous system, we revealed dynamics of galactose metabolism in various tissues. Notably, we discovered that intestinal stem cells do not uptake detectable levels of galactose or glucose. GALDAR elucidates the role for galactokinase in metabolism of galactose and a transition of galactose metabolism during the larval period. This work provides a new system that enables analyses of in vivo sugar metabolism.


Asunto(s)
Galactosa , Glucólisis , Animales , Galactosa/metabolismo , Glucólisis/genética , Glicosilación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Drosophila/metabolismo , Glucosa/metabolismo
2.
Life Sci Alliance ; 7(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38296349

RESUMEN

Cell death and proliferation are at a glance dichotomic events, but occasionally coupled. Caspases, traditionally known to execute apoptosis, play non-apoptotic roles, but their exact mechanism remains elusive. Here, using Drosophila intestinal stem cells (ISCs), we discovered that activation of caspases induces massive cell proliferation rather than cell death. We elucidate that a positive feedback circuit exists between caspases and JNK, which can simultaneously drive cell proliferation and cell death. In ISCs, signalling from JNK to caspases is defective, which skews the balance towards proliferation. Mechanistically, two-tiered regulation of the DIAP1 inhibitor rpr, through its transcription and its protein localization, exists. This work provides a conceptual framework that explains how caspases perform apoptotic and non-apoptotic functions in vivo and how ISCs accomplish their resistance to cell death.


Asunto(s)
Proteínas de Drosophila , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retroalimentación , Proteínas Inhibidoras de la Apoptosis/metabolismo , Muerte Celular , Drosophila/metabolismo , Caspasas/metabolismo , Proliferación Celular/genética , Células Madre/metabolismo
3.
Biol Open ; 13(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38156558

RESUMEN

Historically, necrosis has been considered a passive process, which is induced by extreme stress or damage. However, recent findings of necroptosis, a programmed form of necrosis, shed a new light on necrosis. It has been challenging to detect necrosis reliably in vivo, partly due to the lack of genetically encoded sensors to detect necrosis. This is in stark contrast with the availability of many genetically encoded biosensors for apoptosis. Here we developed Necrosensor, a genetically encoded fluorescent sensor that detects necrosis in Drosophila, by utilizing HMGB1, which is released from the nucleus as a damage-associated molecular pattern (DAMP). We demonstrate that Necrosensor is able to detect necrosis induced by various stresses in multiple tissues in both live and fixed conditions. Necrosensor also detects physiological necrosis that occurs during spermatogenesis in the testis. Using Necrosensor, we discovered previously unidentified, physiological necrosis of hemocyte progenitors in the hematopoietic lymph gland of developing larvae. This work provides a new transgenic system that enables in vivo detection of necrosis in real time without any intervention.


Asunto(s)
Técnicas Biosensibles , Drosophila , Masculino , Animales , Drosophila/genética , Necrosis , Apoptosis , Espermatogénesis
4.
EMBO J ; 42(12): e111383, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37140455

RESUMEN

Cancer exerts pleiotropic, systemic effects on organisms, leading to health deterioration and eventually to organismal death. How cancer induces systemic effects on remote organs and the organism itself still remains elusive. Here we describe a role for NetrinB (NetB), a protein with a particularly well-characterized role as a tissue-level axon guidance cue, in mediating oncogenic stress-induced organismal, metabolic reprogramming as a systemic humoral factor. In Drosophila, Ras-induced dysplastic cells upregulate and secrete NetB. Inhibition of either NetB from the transformed tissue or its receptor in the fat body suppresses oncogenic stress-induced organismal death. NetB from the dysplastic tissue remotely suppresses carnitine biosynthesis in the fat body, which is critical for acetyl-CoA generation and systemic metabolism. Supplementation of carnitine or acetyl-CoA ameliorates organismal health under oncogenic stress. This is the first identification, to our knowledge, of a role for the Netrin molecule, which has been studied extensively for its role within tissues, in humorally mediating systemic effects of local oncogenic stress on remote organs and organismal metabolism.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Netrinas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Acetilcoenzima A/metabolismo , Transducción de Señal , Axones/metabolismo , Factores de Crecimiento Nervioso/metabolismo
5.
EMBO J ; 42(8): e110454, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36727601

RESUMEN

Cells need to sense stresses to initiate the execution of the dormant cell death program. Since the discovery of the first BH3-only protein Bad, BH3-only proteins have been recognized as indispensable stress sensors that induce apoptosis. BH3-only proteins have so far not been identified in Drosophila despite their importance in other organisms. Here, we identify the first Drosophila BH3-only protein and name it sayonara. Sayonara induces apoptosis in a BH3 motif-dependent manner and interacts genetically and biochemically with the BCL-2 homologous proteins, Buffy and Debcl. There is a positive feedback loop between Sayonara-mediated caspase activation and autophagy. The BH3 motif of sayonara phylogenetically appeared at the time of the ancestral gene duplication that led to the formation of Buffy and Debcl in the dipteran lineage. To our knowledge, this is the first identification of a bona fide BH3-only protein in Drosophila, thus providing a unique example of how cell death mechanisms can evolve both through time and across taxa.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Apoptosis/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas de Drosophila/metabolismo
6.
PLoS Biol ; 20(4): e3001586, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35468130

RESUMEN

Many adult tissues are composed of differentiated cells and stem cells, each working in a coordinated manner to maintain tissue homeostasis during physiological cell turnover. Old differentiated cells are believed to typically die by apoptosis. Here, we discovered a previously uncharacterized, new phenomenon, which we name erebosis based on the ancient Greek word erebos ("complete darkness"), in the gut enterocytes of adult Drosophila. Cells that undergo erebosis lose cytoskeleton, cell adhesion, organelles and fluorescent proteins, but accumulate Angiotensin-converting enzyme (Ance). Their nuclei become flat and occasionally difficult to detect. Erebotic cells do not have characteristic features of apoptosis, necrosis, or autophagic cell death. Inhibition of apoptosis prevents neither the gut cell turnover nor erebosis. We hypothesize that erebosis is a cell death mechanism for the enterocyte flux to mediate tissue homeostasis in the gut.


Asunto(s)
Drosophila , Enterocitos , Animales , Apoptosis , Muerte Celular , Drosophila/metabolismo , Enterocitos/metabolismo , Homeostasis
7.
Nat Metab ; 4(1): 4-6, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35039674
8.
Nat Metab ; 3(4): 546-557, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33820991

RESUMEN

Tissue integrity is contingent on maintaining stem cells. Intestinal stem cells (ISCs) over-proliferate during ageing, leading to tissue dysplasia in Drosophila melanogaster. Here we describe a role for white, encoding the evolutionarily conserved ATP-binding cassette transporter subfamily G, with a particularly well-characterized role in eye colour pigmentation, in ageing-induced ISC proliferation in the midgut. ISCs increase expression of white during ageing. ISC-specific inhibition of white suppresses ageing-induced ISC dysregulation and prolongs lifespan. Of the proteins that form heterodimers with White, Brown mediates ISC dysregulation during ageing. Metabolomics analyses reveal previously unappreciated, profound metabolic impacts of white inhibition on organismal metabolism. Among the metabolites affected by White, tetrahydrofolate is transported by White, is accumulated in ISCs during ageing and is indispensable for ageing-induced ISC over-proliferation. Since Thomas Morgan's isolation of a white mutant as the first Drosophila mutant, white mutants have been used extensively as genetic systems and often as controls. Our findings provide insights into metabolic regulation of stem cells mediated by the classic gene white.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/fisiología , Envejecimiento/genética , Envejecimiento/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Proteínas del Ojo/genética , Proteínas del Ojo/fisiología , Homeostasis/genética , Homeostasis/fisiología , Intestinos/fisiología , Células Madre/fisiología , Animales , Proliferación Celular , Drosophila melanogaster/genética , Color del Ojo/genética , Ácido Fólico/metabolismo , Intestinos/citología , Intestinos/crecimiento & desarrollo , Metabolómica
9.
Elife ; 102021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33902813

RESUMEN

Oncogenes often promote cell death as well as proliferation. How oncogenes drive these diametrically opposed phenomena remains to be solved. A key question is whether cell death occurs as a response to aberrant proliferation signals or through a proliferation-independent mechanism. Here, we reveal that Src, the first identified oncogene, simultaneously drives cell proliferation and death in an obligatorily coupled manner through parallel MAPK pathways. The two MAPK pathways diverge from a lynchpin protein Slpr. A MAPK p38 drives proliferation whereas another MAPK JNK drives apoptosis independently of proliferation signals. Src-p38-induced proliferation is regulated by methionine-mediated Tor signaling. Reduction of dietary methionine uncouples the obligatory coupling of cell proliferation and death, suppressing tumorigenesis and tumor-induced lethality. Our findings provide an insight into how cells evolved to have a fail-safe mechanism that thwarts tumorigenesis by the oncogene Src. We also exemplify a diet-based approach to circumvent oncogenesis by exploiting the fail-safe mechanism.


Asunto(s)
Muerte Celular , Proliferación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Metionina/deficiencia , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Larva/genética , Larva/crecimiento & desarrollo , Larva/fisiología , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo
10.
Nat Commun ; 7: 12282, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27452696

RESUMEN

In most multicellular organisms, homeostasis is contingent upon maintaining epithelial integrity. When unanticipated insults breach epithelial barriers, dormant programmes of tissue repair are immediately activated. However, many of the mechanisms that repair damaged epithelia remain poorly characterized. Here we describe a role for Plexin A (PlexA), a protein with particularly well-characterized roles in axonal pathfinding, in the healing of damaged epithelia in Drosophila. Semaphorins, which are PlexA ligands, also regulate tissue repair. We show that Drosophila PlexA has GAP activity for the Rap1 GTPase, which is known to regulate the stability of adherens junctions. Our observations suggest that the inhibition of Rap1 activity by PlexA in damaged Drosophila epithelia allows epithelial remodelling, thus facilitating wound repair. We also demonstrate a role for Plexin A1, a zebrafish orthologue of Drosophila PlexA, in epithelial repair in zebrafish tail fins. Thus, plexins function in epithelial wound healing in diverse taxa.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Drosophila melanogaster/metabolismo , Epitelio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Cicatrización de Heridas , Pez Cebra/metabolismo , Actinas/metabolismo , Uniones Adherentes/metabolismo , Aletas de Animales/metabolismo , Animales , Células Epiteliales/metabolismo , Interferencia de ARN , Transducción de Señal
11.
J Cell Biol ; 199(2): 225-34, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23045550

RESUMEN

Tissue injury can lead to scar formation or tissue regeneration. How regenerative animals sense initial tissue injury and transform wound signals into regenerative growth is an unresolved question. Previously, we found that the Src family kinase (SFK) Lyn functions as a redox sensor in leukocytes that detects H(2)O(2) at wounds in zebrafish larvae. In this paper, using zebrafish larval tail fins as a model, we find that wounding rapidly activated SFK and calcium signaling in epithelia. The immediate SFK and calcium signaling in epithelia was important for late epimorphic regeneration of amputated fins. Wound-induced activation of SFKs in epithelia was dependent on injury-generated H(2)O(2). A SFK member, Fynb, was responsible for fin regeneration. This work provides a new link between early wound responses and late regeneration and suggests that redox, SFK, and calcium signaling are immediate "wound signals" that integrate early wound responses and late epimorphic regeneration.


Asunto(s)
Señalización del Calcio , Regeneración/fisiología , Cicatrización de Heridas/fisiología , Familia-src Quinasas/metabolismo , Aletas de Animales/lesiones , Aletas de Animales/metabolismo , Animales , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Proteínas Proto-Oncogénicas c-yes/genética , Proteínas Proto-Oncogénicas c-yes/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
12.
J Cell Sci ; 125(Pt 23): 5702-10, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22992461

RESUMEN

Microtubules control cell motility by positively regulating polarization in many cell types. However, how microtubules regulate leukocyte migration is not well understood, particularly in living organisms. Here we exploited the zebrafish system to study the role of microtubules in neutrophil migration in vivo. The localization of microtubules was visualized in motile neutrophils using various bioprobes, revealing that, in contrast to what has been seen in studies in vitro, the microtubule organizing center is positioned in front of the nucleus (relative to the direction of migration) in motile neutrophils. Microtubule disassembly impaired attraction of neutrophils to wounds but enhanced the polarity of F-actin dynamics as measured by the distribution of stable and dynamic F-actin. Microtubule depolymerization inhibited polarized phosphoinositol 3-kinase (PI(3)K) activation at the leading edge and induced rapid PI(3)K independent motility. Finally, we show that microtubules exert their effects on neutrophil polarity and motility at least in part by the negative regulation of both Rho and Rac activity. These results provide new insight into the role of microtubules in neutrophil migration in a living vertebrate and show that the motility of these professional migratory cells are subject to distinctly different rules from those established for other cell types.


Asunto(s)
Microtúbulos/metabolismo , Neutrófilos/citología , Neutrófilos/metabolismo , Pez Cebra/metabolismo , Animales , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Quimiotaxis/fisiología
13.
J Cell Sci ; 125(Pt 21): 4973-8, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22946052

RESUMEN

Neutrophil recruitment to sites of injury or infection is essential for host defense, but it needs to be tightly regulated to prevent tissue damage. Phosphoinositide 3-kinase (PI3K), which generates the phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P(3)], is necessary for neutrophil motility in vivo; however, the role of SH2-domain-containing 5-inositol phosphatase (SHIP) enzymes, which hydrolyze PI(3,4,5)P(3) to phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)], is not well understood. Here we show that SHIP phosphatases limit neutrophil motility in live zebrafish. Using real-time imaging of bioprobes specific for PI(3,4,5)P(3) and PI(3,4)P(2) in neutrophils, we found that PI(3,4,5)P(3) and PI(3,4)P(2) accumulate at the leading edge while PI(3,4)P(2) also localizes to the trailing edge of migrating neutrophils in vivo. Depletion of SHIP phosphatases using morpholino oligonucleotides led to increased neutrophil 3D motility and neutrophil infiltration into wounds. The increase in neutrophil wound recruitment in SHIP morphants was rescued by treatment with low dose PI3Kγ inhibitor, suggesting that SHIP limits neutrophil motility by modulating PI3K signaling. Moreover, overexpression of the SHIP phosphatase domain in neutrophils impaired neutrophil 3D migration. Taken together, our findings suggest that SHIP phosphatases control neutrophil inflammation by limiting neutrophil motility in vivo.


Asunto(s)
Neutrófilos/enzimología , Monoéster Fosfórico Hidrolasas/metabolismo , Cicatrización de Heridas , Proteínas de Pez Cebra/metabolismo , Animales , Movimiento Celular , Embrión no Mamífero/citología , Embrión no Mamífero/enzimología , Embrión no Mamífero/inmunología , Expresión Génica , Neutrófilos/inmunología , Neutrófilos/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Monoéster Fosfórico Hidrolasas/genética , Transporte de Proteínas , Sistemas de Mensajero Secundario , Cola (estructura animal) , Imagen de Lapso de Tiempo , Pez Cebra , Proteínas de Pez Cebra/genética
14.
Nature ; 480(7375): 109-12, 2011 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-22101434

RESUMEN

Tissue wounding induces the rapid recruitment of leukocytes. Wounds and tumours--a type of 'unhealed wound'--generate hydrogen peroxide (H(2)O(2)) through an NADPH oxidase (NOX). This extracellular H(2)O(2) mediates recruitment of leukocytes, particularly the first responders of innate immunity, neutrophils, to injured tissue. However, the sensor that neutrophils use to detect the redox state at wounds is unknown. Here we identify the Src family kinase (SFK) Lyn as a redox sensor that mediates initial neutrophil recruitment to wounds in zebrafish larvae. Lyn activation in neutrophils is dependent on wound-derived H(2)O(2) after tissue injury, and inhibition of Lyn attenuates neutrophil wound recruitment. Inhibition of SFKs also disrupted H(2)O(2)-mediated chemotaxis of primary human neutrophils. In vitro analysis identified a single cysteine residue, C466, as being responsible for direct oxidation-mediated activation of Lyn. Furthermore, transgenic-tissue-specific reconstitution with wild-type Lyn and a cysteine mutant revealed that Lyn C466 is important for the neutrophil wound response and downstream signalling in vivo. This is the first identification, to our knowledge, of a physiological redox sensor that mediates leukocyte wound attraction in multicellular organisms.


Asunto(s)
Neutrófilos/enzimología , Oxidación-Reducción , Heridas y Lesiones/enzimología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Familia-src Quinasas/metabolismo , Animales , Células Cultivadas , Células HEK293 , Humanos , Peróxido de Hidrógeno/metabolismo , Larva , Pez Cebra/metabolismo
15.
Dev Cell ; 21(4): 735-45, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-22014524

RESUMEN

Neutrophil homeostasis is essential for host defense. Here we identify dual roles for Rac2 during neutrophil homeostasis using a zebrafish model of primary immune deficiency induced by the human inhibitory Rac2D57N mutation in neutrophils. Noninvasive live imaging of Rac2 morphants or Rac2D57N zebrafish larvae demonstrates an essential role for Rac2 in regulating 3D motility and the polarization of F-actin dynamics and PI(3)K signaling in vivo. Tracking of photolabeled Rac2-deficient neutrophils from hematopoietic tissue also shows increased mobilization into the circulation, indicating that neutrophil mobilization does not require traditionally defined cell motility. Moreover, excessive neutrophil retention in hematopoietic tissue resulting from a constitutively active CXCR4 mutation in zebrafish warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is partially rescued by the inhibitory Rac2 mutation. These findings reveal that Rac2 signaling is necessary for both neutrophil 3D motility and CXCR4-mediated neutrophil retention in hematopoietic tissue, thereby limiting neutrophil mobilization, a critical first step in the innate immune response.


Asunto(s)
Movimiento Celular/fisiología , Sistema Hematopoyético/fisiología , Neutrófilos/citología , Pez Cebra/genética , Proteínas de Unión al GTP rac/fisiología , Actinas/metabolismo , Agammaglobulinemia/complicaciones , Animales , Animales Modificados Genéticamente , Bacterias , Infecciones Bacterianas/complicaciones , Western Blotting , Médula Ósea/metabolismo , Técnica del Anticuerpo Fluorescente , Células HL-60 , Humanos , Síndromes de Inmunodeficiencia/complicaciones , Larva/metabolismo , Larva/microbiología , Mutación/genética , Neutrófilos/metabolismo , ARN Mensajero/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Verrugas/complicaciones , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteína RCA2 de Unión a GTP
16.
J Leukoc Biol ; 89(5): 661-7, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21248150

RESUMEN

How neutrophils traffic during inflammation in vivo remains elusive. To visualize the origin and fate of neutrophils during induction and resolution of inflammation, we established a genetically encoded photolabeling system by generating transgenic zebrafish that express a photoconvertible fluorescent reporter Dendra2 in neutrophils. Spatiotemporal photolabeling of neutrophils in vivo demonstrates that they emerge from the hematopoietic tissue in close proximity to injured tissue and repeat forward and reverse migration between the wound and the vasculature. Subsequently, neutrophils disperse throughout the body as wound-healing proceeds, contributing to local resolution at injured tissue and systemic dissemination of wound-sensitized neutrophils. Tissue damage also alters the fate of neutrophils in the caudal hematopoietic tissue and promotes caudorostral mobilization of neutrophils via the circulation to the cephalic mesenchyme. This work provides new insight into neutrophil behaviors during inflammation and resolution within a multicellular organism.


Asunto(s)
Movimiento Celular , Modelos Animales de Enfermedad , Inflamación/patología , Luz , Proteínas Luminiscentes/química , Neutrófilos/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Western Blotting , Embrión no Mamífero/metabolismo , Embrión no Mamífero/efectos de la radiación , Procesamiento de Imagen Asistido por Computador , Inflamación/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Neutrófilos/patología , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cicatrización de Heridas , Pez Cebra/crecimiento & desarrollo
17.
Blood ; 116(15): 2803-11, 2010 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-20592249

RESUMEN

CXCR4 is a G protein-coupled chemokine receptor that has been implicated in the pathogenesis of primary immunodeficiency disorders and cancer. Autosomal dominant gain-of-function truncations of CXCR4 are associated with warts, hypo-gammaglobulinemia, infections, and myelokathexis (WHIM) syndrome, a primary immunodeficiency disorder characterized by neutropenia and recurrent infections. Recent progress has implicated CXCR4-SDF1 (stromal cell-derived factor 1) signaling in regulating neutrophil homeostasis, but the precise role of CXCR4-SDF1 interactions in regulating neutrophil motility in vivo is not known. Here, we use the optical transparency of zebrafish to visualize neutrophil trafficking in vivo in a zebrafish model of WHIM syndrome. We demonstrate that expression of WHIM mutations in zebrafish neutrophils induces neutrophil retention in hematopoietic tissue, impairing neutrophil motility and wound recruitment. The neutrophil retention signal induced by WHIM truncation mutations is SDF1 dependent, because depletion of SDF1 with the use of morpholino oligonucleotides restores neutrophil chemotaxis to wounds. Moreover, localized activation of a genetically encoded, photoactivatable Rac guanosine triphosphatase is sufficient to direct migration of neutrophils that express the WHIM mutation. The findings suggest that this transgenic zebrafish model of WHIM syndrome may provide a valuable tool to screen for agents that modify CXCR4-SDF1 retention signals.


Asunto(s)
Neutropenia/genética , Neutropenia/patología , Neutrófilos/fisiología , Agammaglobulinemia/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Movimiento Celular , Quimiocina CXCL12/genética , Quimiotaxis de Leucocito , Modelos Animales de Enfermedad , Expresión Génica , Hematopoyesis , Humanos , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/patología , Datos de Secuencia Molecular , Mutación , Neutrófilos/patología , Receptores CXCR4/genética , Transducción de Señal , Síndrome , Pez Cebra , Proteínas de Pez Cebra/genética
18.
Dev Cell ; 18(2): 226-36, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20159593

RESUMEN

Cell polarity is crucial for directed migration. Here we show that phosphoinositide 3-kinase (PI(3)K) mediates neutrophil migration in vivo by differentially regulating cell protrusion and polarity. The dynamics of PI(3)K products PI(3,4,5)P(3)-PI(3,4)P(2) during neutrophil migration were visualized in living zebrafish, revealing that PI(3)K activation at the leading edge is critical for neutrophil motility in intact tissues. A genetically encoded photoactivatable Rac was used to demonstrate that localized activation of Rac is sufficient to direct migration with precise temporal and spatial control in vivo. Similar stimulation of PI(3)K-inhibited cells did not direct migration. Localized Rac activation rescued membrane protrusion but not anteroposterior polarization of F-actin dynamics of PI(3)K-inhibited cells. Uncoupling Rac-mediated protrusion and polarization suggests a paradigm of two-tiered PI(3)K-mediated regulation of cell motility. This work provides new insight into how cell signaling at the front and back of the cell is coordinated during polarized cell migration in intact tissues within a multicellular organism.


Asunto(s)
Neutrófilos/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Polaridad Celular/efectos de los fármacos , Polaridad Celular/fisiología , Quimiotaxis de Leucocito/efectos de los fármacos , Quimiotaxis de Leucocito/fisiología , Cromonas/farmacología , Fosfatidilinositol 3-Quinasa Clase Ib , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Isoenzimas/antagonistas & inhibidores , Isoenzimas/fisiología , Morfolinas/farmacología , Neutrófilos/efectos de los fármacos , Fosfatos de Fosfatidilinositol/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Sistemas de Mensajero Secundario , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Proteína de Unión al GTP rac1/fisiología
19.
Dev Comp Immunol ; 33(11): 1212-7, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19619578

RESUMEN

Zebrafish have emerged as a powerful model system to study leukocyte recruitment and inflammation. Here we characterize the morphology and function of inflammatory macrophages in zebrafish larvae. These macrophages can be distinguished from neutrophils by immunolabeling of L-Plastin without MPO co-expression and by an elongated morphology. Live imaging of transgenic zMPO:GFP larvae demonstrate that GFP(lo) macrophages migrate to wounds by extension of thin pseudopods and carry out phagocytosis of tissue debris, and FACS analysis of leukocyte markers indicates expression of CSF1R in these macrophages. These findings identify distinct functional and morphological characteristics of inflammatory macrophages in zebrafish larvae.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Pez Cebra/inmunología , Animales , Animales Modificados Genéticamente , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/inmunología , Movimiento Celular/inmunología , Separación Celular , Citometría de Flujo , Inflamación , Larva/inmunología , Macrófagos/inmunología , Macrófagos/patología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/inmunología , Peroxidasa/metabolismo , Fagocitosis , Seudópodos/inmunología , Receptor de Factor Estimulante de Colonias de Macrófagos/genética , Receptor de Factor Estimulante de Colonias de Macrófagos/inmunología
20.
Curr Biol ; 19(14): R553-5, 2009 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-19640490

RESUMEN

How leukocytes are attracted to wounds is poorly understood. Recent work using zebrafish reveals a novel mechanism of early leukocyte recruitment to wounds through a concentration gradient of hydrogen peroxide.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Inmunidad Innata/inmunología , Leucocitos/metabolismo , Estallido Respiratorio/fisiología , Cicatrización de Heridas/inmunología , Animales , Leucocitos/inmunología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...