Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; : e2403537, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004860

RESUMEN

Rechargeable batteries have transformed human lives and modern industry, ushering in new technological advancements such as mobile consumer electronics and electric vehicles. However, to fulfill escalating demands, it is crucial to address several critical issues including energy density, production cost, cycle life and durability, temperature sensitivity, and safety concerns is imperative. Recent research has shed light on the intricate relationship between these challenges and the chemical processes occurring at the electrode-electrolyte interface. Consequently, a novel approach has emerged, utilizing self-assembled molecular layers (SAMLs) of meticulously designed molecules as nanomaterials for interface engineering. This research provides a comprehensive overview of recent studies underscoring the significant roles played by SAML in rechargeable battery applications. It discusses the mechanisms and advantageous features arising from the incorporation of SAML. Moreover, it delineates the remaining challenges in SAML-based rechargeable battery research and technology, while also outlining future perspectives.

2.
J Am Chem Soc ; 146(7): 4922-4929, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38324711

RESUMEN

The study of molecular wires facilitating long-range charge transport is of fundamental interest for the development of various technologies in (bio)organic and molecular electronics. Defining the nature of long-range charge transport is challenging as electrical characterization does not offer the ability to distinguish a tunneling mechanism from the other. Here, we show that investigation of the Seebeck effect provides the ability. We examine the length dependence of the Seebeck coefficient in electrografted bis-terpyridine Ru(II) complex films. The Seebeck coefficient ranges from 307 to 1027 µV/K, with an increasing rate of 95.7 µV/(K nm) as the film thickness increases to 10 nm. Quantum-chemical calculations unveil that the nearly overlapped molecular-orbital energy level of the Ru complex with the Fermi level accounts for the giant thermopower. Landauer-Büttiker probe simulations indicate that the significant length dependence evinces the Seebeck effect dominated by coherent near-resonant tunneling rather than thermal hopping. This study enhances our comprehension of long-range charge transport, paving the way for efficient electronic and thermoelectric materials.

3.
Nano Lett ; 24(6): 1988-1995, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38270106

RESUMEN

Underpotential deposition (UPD) is an intriguing means for tailoring the interfacial electronic structure of an adsorbate at a substrate. Here we investigate the impact of UPD on thermoelectricity occurring in molecular tunnel junctions based on alkyl self-assembled monolayers (SAMs). We observed noticeable enhancements in the Seebeck coefficient of alkanoic acid and alkanethiol monolayers, by up to 2- and 4-fold, respectively, upon replacement of a conventional Au electrode with an analogous bimetallic electrode, Cu UPD on Au. Quantum transport calculations indicated that the increased Seebeck coefficients are due to the UPD-induced changes in the shape or position of transmission resonances corresponding to gateway orbitals, which depend on the choice of the anchor group. Our work unveils UPD as a potent means for altering the shape of the tunneling energy barrier at the molecule-electrode contact of alkyl SAM-based junctions and hence enhancing thermoelectric performance.

4.
Small ; 20(5): e2305997, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37726226

RESUMEN

Functionality in molecular electronics relies on inclusion of molecular orbital energy level within a transmission window. This can be achieved by designing the active molecule with accessible energy levels or by widening the window. While many studies have adopted the first approach, the latter is challenging because defects in the active molecular component cause low breakdown voltages. Here, it is shown that control over the packing structure of monolayer via supramolecular mixing transforms an inert molecule into a highly tunable rectifier. Binary mixed monolayer composed of alkanethiolates with and without carboxylic acid head group as a proof of concept is formed via a surface-exchange reaction. The monolayer withstands high voltages up to |4.5 V| and shows a dynamic rectification-external bias relationship in magnitude and polarity. Sub-highest occupied molecular orbital (HOMO) levels activated by the widened transmission window account for these observations. This work demonstrates that simple supramolecular mixing can imbue new electrical properties in electro-inactive organic molecules.

5.
Acc Chem Res ; 56(12): 1613-1622, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37276526

RESUMEN

ConspectusUnderstanding the thermoelectric effects that convert energy between heat and electricity on a molecular scale is of great interest to the nanoscience community. As electronic devices continue to be miniaturized to nanometer scales, thermoregulation on such devices becomes increasingly critical. In addition, the study of molecular thermoelectricity provides information that cannot be accessed through conventional electrical conductance measurements. The field of molecular thermoelectrics aims to explore thermoelectric effects in electrode-molecule-electrode tunnel junctions and draw inferences on how the (supra)molecular structure of active molecules is associated with their thermopower. In this Account, we introduce a convenient and useful junction technique that enables thermovoltage measurements of one molecule thick films, self-assembled monolayers (SAMs), with reliability, and discuss the atomic-detailed structure-thermopower relations established by the technique. The technique relies on a microelectrode composed of non-Newtonian liquid metal, eutectic gallium-indium (EGaIn) covered with a native gallium oxide layer. The EGaIn electrode makes it possible to form thermoelectric contacts with the delicate structure of SAMs in a noninvasive fashion. A defined interface between SAM and the EGaIn electrode allows time-effective collection of large amounts of thermovoltage data, with great reproducibility, efficiency, and reliable interpretation and statistical analysis of the data. We also highlight recent efforts to utilize the EGaIn technique for probing molecular thermoelectricity and structure-thermopower relations. Using the technique, it was possible to unravel quantum-chemical mechanisms of thermoelectric functions, based on the Mott formula, in SAM-based large-area junctions, which in turn led us to set various hypotheses to boost the Seebeck coefficient. By validating the hypotheses again with the EGaIn technique, we revealed that the thermopower of junction increases through the reduction of the energy offset between accessible molecular orbital energy level and Fermi level or the tuning of broadening of the orbital energy level. Such alterations in the shape of energy topography of junction could be achieved through structural modifications in anchoring group and molecular backbone of SAM, and the bottom electrode. Molecular thermoelectrics offers a unique opportunity to build a well-defined nanoscale system and isolate an effect of interest from others, advancing fundamental understanding of charge transport across individual molecules and molecule-electrode interfaces. In the Account, we showed our recent work involving carefully designed molecular system that are relevant to answering the question of how thermopower differs between the tunneling and thermal-hopping regimes. The field of molecular thermoelectrics needs to address practical application-related issues, particularly molecular degradation in thermal environments. In this regard, we summarized the results highlighting the thermal instability of SAM-based junctions based on a traditional thiol anchor group and how to circumvent this problem. We also discussed the power factor (PF)─a practical parameter representing the efficiency for converting heat into electricity─of SAMs, evaluated using the EGaIn technique. In the Conclusion section of this Account, we present future challenges and perspectives.

6.
Chem Commun (Camb) ; 59(32): 4818-4821, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37009682

RESUMEN

Reductive amination has been widely used for manufacturing carbon-nitrogen-containing building blocks. Despite its versatility, the need for a chemical reductant or harmful hydrogen gas has limited its further utilization in modern chemical applications. Here, we report electrochemical reductive amination (ERA) to pursue sustainable synthetic routes. Faradaic efficiencies of about 83% are achieved using Cu metal electrodes. In-depth electrokinetic studies reveal the rate-determining step and overall reaction nature of ERA. Through the experiments using deuterated solvent and additional proton sources, we scrutinize the origin of protons during the ERA. Furthermore, CW-EPR analysis captures the radical intermediate species, formed during the catalytic cycle, advancing mechanistic understanding of ERA process.

7.
Chemistry ; 29(15): e202203536, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36548089

RESUMEN

This study examines thermoresponse of odd-even effect in self-assembled monolayers (SAMs) of n-alkanethiolates (SCn , n=3-18) formed on template-stripped gold (AuTS ) using macro- and microscopic analytical techniques, contact angle goniometry (CAG) and vibrational sum frequency generation (VSFG) spectroscopy, respectively. Both CAG and VSFG analyses showed that the odd-even effect in liquid-like SAMs (n=3-9) disappeared upon heating at 50-70 °C, indicating that the heating led to increased structural disorder regardless of odd and even carbon numbers. In contrast, the opposite thermoresponse was observed for odd and even SCn molecules in wax- and solid-like SAMs (n=10-18). Namely, temperature-dependent orientational change of terminal CH3 relative to the surface normal was opposite for the odd and even molecules, thereby leading to mitigated odd-even effect. Our work offers important insights into thermoresponse of supramolecular structure in condensed organic matter.

8.
J Phys Chem B ; 127(1): 407-424, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36580625

RESUMEN

This paper describes measurements of charge transport by tunneling through molecular junctions comprising a self-assembled monolayer (SAM) supported by a template-stripped metal bottom electrode (MTS), which has been immersed in an organic liquid and contacted by a conical Ga2O3/EGaIn top electrode. These junctions formed in organic liquids are robust; they show stabilities and yields similar to those formed in air. We formed junctions under seven external environments: (I) air, (II) perfluorocarbons, (III) linear hydrocarbons, (IV) cyclic hydrocarbons, (V) aromatic compounds, (VI) large, irregularly shaped hydrocarbons, and (VII) dimethyl siloxanes. Several different lengths of SAMs of n-alkanethiolates, S(CH2)n-1CH3 with n = 4-18, and two different kinds of bottom electrodes (AgTS or AuTS) are employed to assess the mechanism underlying the observed changes in tunneling currents. Measurements of current density through junctions immersed in perfluorocarbons (II) are comparable to junctions measured in air. Junctions immersed in other organic liquids show reductions in the values of current density, compared to the values in air, ranging from 1 (III) to 5 orders of magnitude (IV). We interpret the most plausible mechanism for these reductions in current densities to be an increase in the length of the tunneling pathway, reflecting the formation of thin (0.5-1.5 nm) liquid films at the interface between the SAM and the Ga2O3/EGaIn electrode. Remarkably, the thickness of the liquid film─estimated by the simplified Simmons model, measurements of electrical breakdown of the junction, and simulations of molecular dynamics─is consistent with the existing observations of structured liquid layers that form between two flat interfaces from measurements obtained by the surface force apparatus. These results suggest the use of the EGaIn junction and measurements of charge transport by tunneling as a new form of surface analysis, with the applications in the study of near-surface, weak, molecular interactions and the behavior of liquid films adjacent to non-polar interfaces.

9.
Nano Lett ; 22(23): 9693-9699, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36441166

RESUMEN

This paper describes the thermoelectric properties of molecular junctions incorporating multinuclear ruthenium alkynyl complexes that comprise Ru(dppe)2 [dppe = 1,2-bis(diphenylphosphino)ethane] fragments and diethylnyl aromatic bridging ligands with thioether anchors. Using the liquid metal technique, the Seebeck coefficient was examined as a function of metal nuclearity, oxidation state, and substituent on the organic ligand backbone. High Seebeck coefficients up to 73 µV/K and appreciable thermal stability with thermovoltage up to ∼3.3 mV at a heating temperature of 423 K were observed. An unusually high proximity of the highest occupied molecular orbital (HOMO) energy level to the Fermi level was revealed to give the remarkable thermoelectric performance as suggested by combined experiments and calculations. This work offers important insights into the development of molecular-scale devices for efficient thermoregulation and heat-to-electricity conversion.

10.
Nano Lett ; 22(18): 7682-7689, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36067367

RESUMEN

The Seebeck effect of a molecular junction in a hopping regime or tunneling-to-hopping transition remains uncertain. This paper describes the Seebeck effect in molecular epitaxy films (OPIn where n = 1-9) based on imine condensation between an aryl amine and aldehyde and investigates how the Seebeck coefficient (S, µV/K) varies at the crossover region. The S value of OPIn linearly increased with increasing the molecular length (d, nm), ranging from 7.2 to 38.0 µV/K. The increasing rate changed from 0.99 to 0.38 µV·K-1 Å-1 at d = 3.4 nm (OPI4). Combined experimental and theoretical studies indicated that such a change stems from a tunneling-to-hopping transition, and the small but detectable length-dependence of thermopower in the long molecules originates from the gradual reduction of the tunneling contribution to the broadening of molecular orbital energy level, rather than its relative position to the Fermi level. Our work helps to bridge the gap between bulk and nanoscale thermoelectric systems.


Asunto(s)
Iminas , Modelos Teóricos , Aldehídos , Aminas
11.
J Enzyme Inhib Med Chem ; 37(1): 2434-2451, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36069240

RESUMEN

In an effort to discover novel scaffolds of non-nucleotide-derived Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) inhibitors to stimulate the Stimulator of Interferon Genes (STING) pathway, we designed and synthesised pyrrolopyrimidine and pyrrolopyridine derivatives and performed structure-activity relationship (SAR) study. We found 18p possessed high potency (IC50 = 25.0 nM) against ENPP1, and activated STING pathway in a concentration dependent manner. Also, in response to STING pathway activation, cytokines such as IFN-ß and IP-10 were induced by 18p in a concentration dependent manner. Finally, we discovered that 18p causes inhibition of tumour growth in 4T1 syngeneic mouse model. This study provides new insight into the designing of novel ENPP1 inhibitors and warrants further development of small molecule immune modulators for cancer immunotherapy.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Animales , Ratones , Hidrolasas Diéster Fosfóricas/metabolismo , Pirimidinas , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Pirroles/farmacología , Relación Estructura-Actividad
12.
ACS Appl Mater Interfaces ; 14(30): 34909-34917, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35839207

RESUMEN

Silver nanowire (AgNW) electrodes are among the most essential flexible transparent electrodes (FTEs) emerging as promising alternatives to brittle indium tin oxide (ITO) electrodes. The polymer comprising the plastic substrate to which the AgNWs are applied must also satisfy the mechanical requirements of the final device and withstand the device processing conditions. However, AgNW-based FTEs have some limitations, such as poor adhesion to coated plastic substrates, surface roughness, and difficulty in patterning. This study demonstrates a new strategy for creating AgNW-based patterned flexible poly(ethylene 2,6-naphthalate) (PEN)-based electrodes with appreciable optical and electrical properties. Introducing poly(2-hydroxyethyl methacrylate) on the PEN substrate enhanced the adhesion between the substrate and AgNWs and improved the dispersibility of the AgNWs. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and a small amount of 2,4-hexadiyne-1,6-diol as a photosensitizer were coated onto the AgNW layer to improve the surface roughness and achieve an effective electrode pattern. By varying the AgNW concentration, we could tune the density and thickness of the AgNWs to optimize the sheet resistance and transmittance. Optimized AgNWs with a sheet resistance of 22.6 Ω/□ and transmittance of 92.3% at 550 nm were achieved. A polymer solar cell (PSC) was fabricated to evaluate the characteristics of the device employing the flexible electrodes. This PSC showed not only a high power conversion efficiency of 11.20%, similar to that of ITO-based devices, but also excellent mechanical stability, which is difficult to achieve in ITO-based flexible devices.

13.
Nano Lett ; 22(12): 4956-4962, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35666178

RESUMEN

This paper describes Li-ion intercalation into a pyrenyl-terminated self-assembled monolayer (SAM) on gold, inspired by the graphite anode in a Li-ion battery, and its effect on tunneling performance in a molecular junction incorporating the SAM. As the concentration of the Li-ion precursor ([LiPF6]) increased from 0 to 10-2 M, the rectification ratio increased to ∼102. Further experiments revealed that the intercalation-induced changes in the orientation of PYR group and in the HOMO energy level account for the enhanced rectification. Treatment with high concentrations of LiPF6 (from 10-2 to 100 M) yielded a considerable solid electrolyte interphase (SEI), mainly composed of LiF, on the surface of the SAM, resulting in the disappearance of rectification. This was attributed to renormalization of the HOMO level back to that of the intact SAM, caused by the SEI layer. Our work demonstrates the interplay among Li-ion intercalation, SEI, and tunneling in the molecular junction, benefiting the research of molecular electronics as well as SAM-based batteries.

14.
Nano Lett ; 22(10): 3953-3960, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35575639

RESUMEN

Molecular junctions can be miniaturized devices for heat-to-electricity conversion application, yet these operate only in mild thermal environments (less than 323 K) because thiol, the most widely used anchor moiety for chemisorption of active molecules onto surface of electrode, easily undergoes thermal degradation. N-Heterocyclic carbene (NHC) can be an alternative to traditional thiol anchor for producing ultrastable thermoelectric molecular junctions. Our experiments showed that the NHC-based molecular junctions withstood remarkably high temperatures up to 573 K, exhibiting consistent Seebeck effect and thermovoltage up to approximately |1900 µV|. Our work advances our understanding of molecule-electrode contact in the Seebeck effect, providing a roadmap for constructing robust and efficient organic thermoelectric devices.

15.
J Am Chem Soc ; 144(18): 7966-7971, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35500106

RESUMEN

This Communication describes polarity inversion in molecular rectification and the related mechanism. Using a supramolecular engineered, ultrastable, binary-mixed self-assembled monolayer (SAM) composed of an organic molecular diode (SC11BIPY) and an inert reinforcement molecule (SC8), we probed a rectification ratio (r)-voltage relationship over an unprecedentedly wide voltage range (up to |3.5 V|) with statistical significance. We observed positive polarity in rectification at |1.0 V| (r = 107), followed by disappearance of rectification at ∼|2.25 V|, and then eventual emergence of new rectification with the opposite polarity at ∼|3.5 V| (r = 0.006; 1/r = 162). The polarity inversion occurred with a span over 4 orders of magnitude in r. Low-temperature experiments, electronic structure analysis, and theoretical calculations revealed that the unusually wide voltage range permits access to molecular orbital energy levels that are inaccessible in the traditional narrow voltage regime, inducing the unprecedented in situ inversion of polarity.


Asunto(s)
Electrónica
16.
Org Lett ; 24(11): 2192-2196, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35285641

RESUMEN

An efficient and transition-metal-free three-component reaction with benzynes formed in situ from 2-(trimethylsilyl)aryl triflate, phosphites, and ketones was developed for the synthesis of benzoxaphosphole 1-oxides. An array of benzoxaphosphole 1-oxides were prepared from both activated and non-activated ketones in moderate to good yields with a broad functional group tolerance. This reaction is useful for preparing organophosphorus compounds encountered in natural products and materials.

17.
Small ; 18(17): e2105680, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35102698

RESUMEN

Single-atom catalysts (SACs) hold the promise of utilizing 100% of the participating atoms in a reaction as active catalytic sites, achieving a remarkable boost in catalytic efficiency. Thus, they present great potential for noble metal-based electrochemical application systems, such as water electrolyzers and fuel cells. However, their practical applications are severely hindered by intrinsic complications, namely atom agglomeration and relocation, originating from the uncontrollably high surface energy of isolated single-atoms (SAs) during postsynthetic treatment processes or catalytic reactions. Extensive efforts have been made to develop new methodologies for strengthening the interactions between SAs and supports, which could ensure the desired stability of the active catalytic sites and their full utilization by SACs. This review covers the recent progress in SACs development while emphasizing the association between the regulation of coordination environments (e.g., coordination atoms, numbers, sites, structures) and the electrocatalytic performance of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The crucial role of coordination chemistry in modifying the intrinsic properties of SACs and manipulating their metal-loading, stability, and catalytic properties is elucidated. Finally, the future challenges of SACS development and the industrial outlook of this field are discussed.


Asunto(s)
Hidrógeno , Oxígeno , Catálisis , Metales/química , Agua
18.
Artículo en Inglés | MEDLINE | ID: mdl-34961308

RESUMEN

In molecular thermoelectrics, the thermopower of molecular junctions is closely interlinked with their thermal properties; however, the detailed relationship between them remains uncertain. This study systematically investigates the thermal properties of self-assembled monolayer (SAM)-based molecular junctions and relates them to the thermoelectric performance of the junctions. The electrode temperatures for the bare AuTS, AuTS/EGaIn, and AuTS/TPT SAM//Ga2O3/EGaIn samples placed on a hot chuck were measured under different conditions, such as air vs vacuum and the presence and absence of thermal grease, which generates a heat conduction channel from a hot chuck to gold. It was revealed that the SAM was the most efficient thermal resistor, which was responsible for the creation of a temperature differential (ΔT) across the junction; ΔT in an air atmosphere is overestimated to some extent, and air mainly contributes to large dispersions of thermovoltage (ΔV) data. While junction measurements in air were possible at low ΔT (up to 13 K), the new optimal condition, under a vacuum and with thermal grease, allowed us to examine a wide temperature range up to ΔT = 40 K and obtain a more reliable Seebeck coefficient (S, µV/K). The value of S under the new condition was ∼1.4 times higher than that measured in air without thermal grease. Our study shows the potential of liquid-metal-based junctions to reliably investigate heat conduction across nanometer-thick organic films and elaborates on how the thermal properties of molecular junctions affect their thermoelectric performance.

19.
Angew Chem Int Ed Engl ; 60(44): 23564-23568, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34499388

RESUMEN

Force-selective mechanochemical reactions may be important for applications in polymer mechanochemistry, yet it is difficult to achieve such reactions. This paper reports that cis-N-phthalimidoaziridine incorporated into a macromolecular backbone undergoes migration of N-phthalimido group to afford imine under mechanochemical condition and not thermal one. The imine is further hydrolyzed by water bifurcating into amine and aldehyde. These structural transformations are confirmed by 1 H NMR and FT-IR spectroscopic analyses. Computational simulations are conducted for the aziridine mechanophore to propose the mechanism of reaction and define the substrate scope of reaction.

20.
Adv Mater ; 33(41): e2103177, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34453364

RESUMEN

Enhancing thermopower is a key goal in organic and molecular thermoelectrics. Herein, it is shown that introducing noncovalent contact with a single-layer graphene (SLG) electrode improves the thermopower of saturated molecules as compared to the traditional gold-thiolate covalent contact. Thermoelectric junction measurements with a liquid-metal technique reveal that the value of Seebeck coefficient in large-area junctions based on n-alkylamine self-assembled monolayers (SAMs) on SLG is increased up to fivefold compared to the analogous junction based on n-alkanethiolate SAMs on gold. Experiments with Raman spectroscopy and field-effect transistor analysis indicate that such enhancements benefit from the creation of new in-gap states and electron doping through noncovalent interaction between the amine anchor and the SLG electrode, which leads to a reduced energy offset between the Fermi level and the transport channel. This work demonstrates that control of interfacial bonding nature in molecular junctions improves the Seebeck effect in saturated molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...