Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568790

RESUMEN

Loquat (Eriobotrya japonica) is a crop cultivated in Southwest Korea, covering an area of 101 ha and yielding 120 tons at harvest (KASS, 2024). Due to its high-income potential, the cultivation area is gradually expanding. In May 2023, 30% of leaf brown spots were observed on all three trees in the Suncheonman National Garden, Suncheon (3488'57.97" N, 12750'92.83" E). As the disease progressed, the brown spot gradually enlarged, turning greyish-ivory inside and forming concentric circles. Three leaf lesions from each tree were cut into 5 x 5 mm pieces, surface-sterilized with 70% ethanol for 1 min, and washed in sterile water three times to isolate the pathogen potentially responsible for these symptoms. The samples obtained were subsequently cultured on 1.5% water agar and then incubated in the dark at 25℃. A total of nine isolates were obtained, with three isolates from each of the three trees through single-spore isolation, namely SYP-1202-1 to 3, SYP-1202-4 to 6, and SYP-1202-7 to 9. The colonies reached 90 mm in diameter after 10 days on potato dextrose agar (PDA), initially dark green, and turned sooty gray after 2 weeks. The hyphae grown on a 0.6% KCl medium for 3 days produced long chains containing three to twelve conidia. The conidia were ellipsoidal or obpyriform in shape and light brown. The conidiophores were straight or curved, measuring 12.1-75.3 x 1.6-4.8 µm (n = 100). The primary and secondary conidia measured length × width of 19.1-60.6 × 6.1-14.4 µm and 8.4-27.8 × 3.5-9.5 µm (n = 100), respectively. The conidia had 1 to 7 transverse and 0 to 3 vertical septa. The morphology of the nine isolates was identical and consistent with Alternaria species (van der Waals et al., 2011; Woudenberg et al., 2015). For molecular identification, ITS (OR844500 to OR844508), GAPDH (OR866383 to OR866391), TEF1 (OR866392 to OR866400), RPB2 (OR866401 to OR866409), Alt a1 (OR866410 to OR866418), endoPG (OR866419 to OR866427), and OPA10-2 (OR866428 to OR866436) sequences from SYP-1202-1 to 9 showed a 100% (515 bp/515 bp), 100% (579/579), 100% (240/240), 100% (753/753), 95.1% (449/472), 100% (448/448), and 100% (634/634) identity with that of type strain A. alternata CBS 115152 (KP124348, KP124202, KP125124, KP124816, KP123896, KP124049, and KP124658, respectively). A pathogenicity test was conducted on three 5-year-old E. japonica cultivar Daebang trees in pots. The surface of the five leaves per tree was sterilized with 70% ethanol for 1 min. Before inoculation, the leaves were wounded with sterile needles and sprayed with the conidial suspension (1×106 conidia/ml) produced from a 1-week-old culture grown on PDA. In contrast, control leaves were sprayed with sterile distilled water. The inoculated leaves were wrapped with black plastic bags and kept at 100% relative humidity for two days. At seven days post-inoculation, symptoms were observed on the wounded leaves, whereas the nonwounded and control leaves did not exhibit any symptoms. The experiment was performed three times in the greenhouse. For each experiment, pathogens were reisolated from the two symptomatic leaves per plant. The identity of the reisolated pathogens was then confirmed via analysis of ITS and RPB2 genes, thereby confirming adherence to Koch's postulates. To the best of our knowledge, this is the first report of E. japonica being infected by A. alternata in Korea. This report provides important information to support effective disease control strategies for E. japonica in orchards in southern Korea.

2.
J Fungi (Basel) ; 10(1)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38248962

RESUMEN

Brown leaf spot disease caused by Alternaria spp. is among the most common diseases of potato crops. Typical brown spot symptoms were observed in commercial potato-cultivation areas of northern Korea from June to August 2020-2021. In total, 68 isolates were collected, and based on sequence analysis of the internal transcribed spacer (ITS) region, the collected isolates were identified as Alternaria spp. (80.9%). Phylogenetic analysis revealed that a majority of these isolates clustered within a clade that included A. alternata. Additionally, the ITS region and rpb2 yielded the most informative sequences for the identification of A. alternata. Pathogenicity tests confirmed that the collected pathogens elicited symptoms identical to those observed in the field. In pathogenicity tests performed on seven commercial cultivars, the pathogens exhibited strong virulence in both wound and non-wound inoculations. Among the cultivars tested, Arirang-1ho, Arirang-2ho, and Golden Ball were resistant to the pathogens. Furthermore, among the fungicides tested in vitro, mancozeb and difenoconazole were found to be effective for inhibiting mycelial growth. In summary, our findings suggest that A. alternata plays a critical role in leaf disease in potato-growing regions and emphasise the necessity of continuous monitoring and management to protect against this disease in Korea.

3.
J Fungi (Basel) ; 9(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38132759

RESUMEN

Phialemonium inflatum is a useful fungus known for its ability to mineralise lignin during primary metabolism and decompose polycyclic aromatic hydrocarbons (PAHs). However, no functional genetic analysis techniques have been developed yet for this fungus, specifically in terms of transformation. In this study, we applied an Agrobacterium tumefaciens-mediated transformation (ATMT) system to P. inflatum for a functional gene analysis. We generated 3689 transformants using the binary vector pSK1044, which carried either the hygromycin B phosphotransferase (hph) gene or the enhanced green fluorescent protein (eGFP) gene to label the transformants. A Southern blot analysis showed that the probability of a single copy of T-DNA insertion was approximately 50% when the co-cultivation of fungal spores and Agrobacterium tumefaciens cells was performed at 24-36 h, whereas at 48 h, it was approximately 35.5%. Therefore, when performing gene knockout using the ATMT system, the co-cultivation time was reduced to ≤36 h. The resulting transformants were mitotically stable, and a PCR analysis confirmed the genes' integration into the transformant genome. Additionally, hph and eGFP gene expressions were confirmed via PCR amplification and fluorescence microscopy. This optimised transformation system will enable functional gene analyses to study genes of interest in P. inflatum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA