Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35807664

RESUMEN

The conventional plant breeding evaluation of large sets of plant phenotypes with precision and speed is very challenging. Thus, consistent, automated, multifaceted, and high-throughput phenotyping (HTP) technologies are becoming increasingly significant as tools to aid conventional breeding programs to develop genetically improved crops. With rapid technological advancement, various vegetation indices (VIs) have been developed. These VI-based imaging approaches, linked with artificial intelligence and a variety of remote sensing applications, provide high-throughput evaluations, particularly in the field of precision agriculture. VIs can be used to analyze and predict different quantitative and qualitative aspects of vegetation. Here, we provide an overview of the various VIs used in agricultural research, focusing on those that are often employed for crop or vegetation evaluation, because that has a linear relationship to crop output, which is frequently utilized in crop chlorophyll, health, moisture, and production predictions. In addition, the following aspects are here described: the importance of VIs in crop research and precision agriculture, their utilization in HTP, recent photogrammetry technology, mapping, and geographic information system software integrated with unmanned aerial vehicles and its key features. Finally, we discuss the challenges and future perspectives of HTP technologies and propose approaches for the development of new tools to assess plants' agronomic traits and data-driven HTP resolutions for precision breeding.

2.
Plants (Basel) ; 11(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35161386

RESUMEN

Root system architecture and morphological diversification in wild accessions are important for crop improvement and productivity in adzuki beans. In this study, via analysis using 2-dimensional (2D) root imaging and WinRHIZO Pro software, we described the root traits of 61 adzuki bean accessions in their early vegetative growth stage. These accessions were chosen for study because they are used in Korea's crop improvement programs; however, their root traits have not been sufficiently investigated. Analysis of variance revealed a significant difference between the accessions of all measured root traits. Distribution analysis demonstrated that most of the root traits followed normal distribution. The accessions showed up to a 17-fold increase in the values in contrasting accessions for the root traits. For total root length (TRL), the values ranged from 82.43 to 1435 cm, and for surface area (SA), they ranged from 12.30 to 208.39 cm2. The values for average diameter (AD) ranged from 0.23 to 0.56 mm. Significant differences were observed for other traits. Overall, the results showed that the accession IT 305544 had the highest TRL, SA, and number of tips (NT), whereas IT 262477 and IT 262492 showed the lowest values for TRL, SA, and AD. Principal component analysis showed an 89% variance for PC1 and PC2. K-mean clustering explained 77.4% of the variance in the data and grouped the accessions into three clusters. All six root traits had greater coefficients of variation (≥15%) among the tested accessions. Furthermore, to determine which root traits best distinguished different accessions, the correlation within our set of accessions provided trait-based ranking depending on their contribution. The identified accessions may be advantageous for the development of new crossing combinations to improve root features in adzuki beans during the early growth stage. The root traits assessed in this study could be attributes for future adzuki bean crop selection and improvement.

3.
Virus Res ; 289: 198128, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32846194

RESUMEN

Tomato spotted wilt virus (TSWV) is one of most destructive viruses in vegetable and ornamental crop production worldwide. A greenhouse survey to determine the incidence of TSWV in Chrysanthemummorifolium Ramat. was conducted during the 2018 and 2019 growing seasons in South Korea. TSWV was detected using a double antibody sandwich-enzyme-linked immunosorbent assay, and positive results were confirmed using reverse transcription-polymerase chain reaction (RT-PCR). A total of 1569 chrysanthemum plants (70.77 %) tested positive for TSWV among 2217 symptomatic chrysanthemum plants collected from 16 greenhouses. In addition, 116 thrips (72.96 %; Frankliniella occidentalis Pergande) that contained TSWV were identified using RT-PCR from a total of 159 thrips collected from the greenhouses during the survey. A high incidence of viruliferous thrips may have played a role in TSWV occurrence in the chrysanthemum greenhouse. To develop a novel approach for thrips management, the effectiveness of a soil-dwelling predatory mite (Stratiolaelaps scimitus Berlese) and 45 essential oils (as bio-insecticides applied via foliar treatment) was assayed. Four essential oils (cinnamon oil, cinnamon bark oil, oregano oil, and thyme oil) were shown to be significantly toxic to eggs, larvae, and adults of F. occidentalis. For the combined treatment, individuals of S. scimitus (60/m2) were placed on the soil in the chrysanthemum greenhouses. Then, a mixture of the four essential oils was applied as foliar treatment at 4-day intervals. A very low incidence of thrips emerged as adults from the soil (1.2-8.5 %) in the combined treatment in the chrysanthemum greenhouses when surveyed twice per month, compared with the non-treated control or when conventional insecticide sprays were applied. The incidence of TSWV (0.93 %) in chrysanthemum treated with S. scimitus in conjunction with the mixture of four essential oils decreased significantly compared with that treated with chemical insecticides (32.05 %) and in the non-treated controls (84.85 %). Our findings contribute to the development of novel strategies to control TSWV disease in chrysanthemum plants; notably, the control of F. occidentalis using eco-friendly insecticides appears promising.


Asunto(s)
Chrysanthemum/virología , Aceites Volátiles/química , Enfermedades de las Plantas/virología , Tospovirus , Animales , República de Corea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA