Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 925744, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812954

RESUMEN

Plants have evolved defense mechanisms to overcome unfavorable climatic conditions. The growth and development of plants are regulated in response to environmental stress. In this study, we investigated the molecular and physiological characteristics of a novel gene PagSAP11 in hybrid poplar (Populus alba × Populus tremula var. glandulosa) under drought stress. PagSAP11, a stress-associated protein (SAP) family gene, encodes a putative protein containing an A20 and AN1 zinc-finger domain at its N- and C-termini, respectively. Knockdown of PagSAP11 transgenic poplars (SAP11-Ri) enhanced their tolerance to drought stress compared with wild type plants. Moreover, the RNAi lines showed increased branching of lateral shoots that led to a gain in fresh weight, even when grown in the living modified organism (LMO) field. In SAP11-Ri transgenic plants, the expression levels of genes involved in axillary bud outgrowth and cell proliferation such as DML10, CYP707A and RAX were increased while the DRM gene which involved in bud dormancy was down-regulated. Taken together, these results indicate that PagSAP11 represents a promising candidate gene for engineering trees with improved stress tolerance and growth during unfavorable conditions.

2.
Plant Physiol Biochem ; 84: 158-168, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25285889

RESUMEN

Drought and salt stresses are major environmental constraints on forest productivity. To identify genes responsible for stress tolerance, we conducted a genome-wide analysis in poplar (Populus alba × Populus glandulosa) leaves exposed to drought and salt (NaCl) stresses. We investigated gene expression at the mRNA level using oligonucleotide microarrays containing 44,718 genes from Populus trichocarpa. A total of 1604 and 1042 genes were up-regulated (≥2-fold; P value < 0.05) by drought and salt stresses, respectively, and 765 genes were up-regulated by both stresses. In addition, 2742 and 1685 genes were down-regulated by drought and salt stresses, respectively, and 1564 genes were down-regulated by both stresses. The large number of genes regulated by both stresses suggests that crosstalk occurs between the drought and salt stress responses. Most up-regulated genes were involved in functions such as subcellular localization, signal transduction, metabolism, and transcription. Among the up-regulated genes, we identified 47 signaling proteins, 65 transcription factors, and 43 abiotic stress-related genes. Several genes were modulated by only one of the two stresses. About 25% of the genes significantly regulated by these stresses are of unknown function, suggesting that poplar may provide an opportunity to discover novel stress-related genes.


Asunto(s)
Sequías , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Populus/efectos de los fármacos , Populus/genética , Cloruro de Sodio/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...