Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Structure ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38908377

RESUMEN

Docking domains (DDs) located at the C- and N-termini of polypeptides play a crucial role in directing the assembly of polyketide synthases (PKSs), which are multienzyme complexes. Here, we determined the crystal structure of a complex comprising the C-terminal DD (CDDMlnB) and N-terminal DD (NDDMlnC) of macrolactin trans-acyltransferase (AT) PKS that were fused to a functional enzyme, AmpC EC2 ß-lactamase. Interface analyses of the CDDMlnB/NDDMlnC complex revealed the molecular intricacies in the core section underpinning the precise DD assembly. Additionally, circular dichroism and steady-state kinetics demonstrated that the formation of the CDDMlnB/NDDMlnC complex had no influence on the structural and functional fidelity of the fusion partner, AmpC EC2. This inspired us to apply the CDDMlnB/NDDMlnC assembly to metabolon engineering. Indeed, DD assembly induced the formation of a complex between 4-coumarate-CoA ligase and chalcone synthase both involved in flavonoid biosynthesis, leading to a remarkable increase in naringenin production in vitro.

2.
Sci Data ; 10(1): 804, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973966

RESUMEN

Streptomyces clavuligerus NRRL 3585 is a native producer of clavulanic acid (CA), a clinically used ß-lactamase inhibitor, and is widely used as an industrial strain for the production of antibiotics. Selective random mutagenesis has successfully generated the improved CA-producing S. clavuligerus mutant strains as well as the strain with the loss of CA biosynthesis. To understand the molecular mechanisms associated with the improved CA-production potential, genome-scale RNA-sequencing-based transcriptional data were obtained for the wild-type S. clavuligerus strain and its three mutant strains. Total RNA samples for each strain were collected across four different growth stages, and all 32 sequencing data points exhibited an average Phred score of 36. The high-quality genome-scale transcriptional profile of S. clavuligerus strains with varied CA biosynthetic potential provides valuable insights and new opportunities for discovering efficient metabolic engineering strategies for the development of improved industrial strains.


Asunto(s)
Antibacterianos , Transcriptoma , Ácido Clavulánico , ARN
3.
J Am Chem Soc ; 145(36): 19676-19690, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37642383

RESUMEN

A targeted and logical discovery method was devised for natural products containing piperazic acid (Piz), which is biosynthesized from ornithine by l-ornithine N-hydroxylase (KtzI) and N-N bond formation enzyme (KtzT). Genomic signature-based screening of a bacterial DNA library (2020 strains) using polymerase chain reaction (PCR) primers targeting ktzT identified 62 strains (3.1%). The PCR amplicons of KtzT-encoding genes were phylogenetically analyzed to classify the 23 clades into two monophyletic groups, I and II. Cultivating hit strains in media supplemented with 15NH4Cl and applying 1H-15N heteronuclear multiple bond correlation (HMBC) along with 1H-15N heteronuclear single quantum coherence (HSQC) and 1H-15N HSQC-total correlation spectroscopy (HSQC-TOCSY) NMR experiments detected the spectroscopic signatures of Piz and modified Piz. Chemical investigation of the hit strains prioritized by genomic and spectroscopic signatures led to the identification of a new azinothricin congener, polyoxyperuin B seco acid (1), previously reported chloptosin (2) in group I, depsidomycin D (3) incorporating two dehydropiperazic acids (Dpz), and lenziamides A and B (4 and 5), structurally novel 31-membered cyclic decapeptides in group II. By consolidating the phylogenetic and chemical analyses, clade-structure relationships were elucidated for 19 of the 23 clades. Lenziamide A (4) inhibited STAT3 activation and induced G2/M cell cycle arrest, apoptotic cell death, and tumor growth suppression in human colorectal cancer cells. Moreover, lenziamide A (4) resensitized 5-fluorouracil (5-FU) activity in both in vitro cell cultures and the in vivo 5-FU-resistant tumor xenograft mouse model. This work demonstrates that the genomic and spectroscopic signature-based searches provide an efficient and general strategy for new bioactive natural products containing specific structural motifs.


Asunto(s)
Productos Biológicos , Genómica , Humanos , Animales , Ratones , Filogenia , Análisis Espectral , Productos Biológicos/farmacología
4.
J Antibiot (Tokyo) ; 76(9): 503-510, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37208457

RESUMEN

Three new 22-membered polyol macrolides, dactylides A-C (1-3), were isolated from Dactylosporangium aurantiacum ATCC 23491 employing repeated chromatographic separations, and their structures were established based on detailed analysis of NMR and MS data. The relative configurations at the stereocenters were established via vicinal 1H-1H coupling constants, NOE correlations, and by application of Kishi's universal NMR database. In order to get insights into the biosynthetic pathway of 1-3, the genome sequence of the producer strain D. aurantiacum was obtained and the putative biosynthetic gene cluster encoding their biosynthesis was identified through bioinformatic analysis using antiSMASH. Compounds 1-3 showed significant in-vitro antimycobacterial and cytotoxic activity.


Asunto(s)
Macrólidos , Micromonosporaceae , Macrólidos/química , Antibacterianos/química , Espectroscopía de Resonancia Magnética
5.
J Am Chem Soc ; 145(3): 1886-1896, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36634356

RESUMEN

The logical and effective discovery of macrolactams, structurally unique natural molecules with diverse biological activities, has been limited by a lack of targeted search methods. Herein, a targeted discovery method for natural macrolactams was devised by coupling genomic signature-based PCR screening of a bacterial DNA library with spectroscopic signature-based early identification of macrolactams. DNA library screening facilitated the efficient selection of 43 potential macrolactam-producing strains (3.6% of 1,188 strains screened). The PCR amplicons of the amine-deprotecting enzyme-coding genes were analyzed to predict the macrolactam type (α-methyl, α-alkyl, or ß-methyl) produced by the hit strains. 1H-15N HSQC-TOCSY NMR analysis of 15N-labeled culture extracts enabled macrolactam detection and structural type assignment without any purification steps. This method identified a high-titer Micromonospora strain producing salinilactam (1), a previously reported α-methyl macrolactam, and two Streptomyces strains producing new α-alkyl and ß-methyl macrolactams. Subsequent purification and spectroscopic analysis led to the structural revision of 1 and the discovery of muanlactam (2), an α-alkyl macrolactam with diene amide and tetraene chromophores, and concolactam (3), a ß-methyl macrolactam with a [16,6,6]-tricyclic skeleton. Detailed genomic analysis of the strains producing 1-3 identified putative biosynthetic gene clusters and pathways. Compound 2 displayed significant cytotoxicity against various cancer cell lines (IC50 = 1.58 µM against HCT116), whereas 3 showed inhibitory activity against Staphylococcus aureus sortase A. This genomic and spectroscopic signature-based method provides an efficient search strategy for new natural macrolactams and will be generally applicable for the discovery of nitrogen-bearing natural products.


Asunto(s)
Streptomyces , Estructura Molecular , Lactamas Macrocíclicas/farmacología , Lactamas Macrocíclicas/química , Streptomyces/metabolismo , Genómica , Reacción en Cadena de la Polimerasa , Familia de Multigenes
6.
Nat Prod Rep ; 40(5): 972-987, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-36691749

RESUMEN

Covering: up to 2022Polyketides derived from actinomycetes are a valuable source of eco-friendly biochemical insecticides. The development of new insecticides is urgently required, as the number of insects resistant to more than one drug is rapidly increasing. Moreover, significant enhancement of the production of such biochemical insecticides is required for economical production. There has been considerable improvement in polyketide insecticidal agent production and development of new insecticides. However, most commercially important biochemical insecticides are synthesized by modular type I polyketide synthases (PKSs), and their structural complexities make chemical modification challenging. A detailed understanding of the biosynthetic mechanisms of potent polyketide insecticides and the structure-activity relationships of their analogs will provide insight into the comprehensive design of new insecticides with improved efficacies. Further metabolic engineering and combinatorial biosynthesis efforts, reinvigorated by synthetic biology, can eventually produce designed analogs in large quantities. This highlight reviews the biosynthesis of representative insecticides produced by modular type I PKSs, such as avermectin, spinosyn, and spectinabilin, and their insecticidal properties. Metabolic engineering and combinatorial biosynthetic strategies for the development of high-yield strains and analogs with insecticidal activities are emphasized, proposing a way to develop a next-generation insecticide.


Asunto(s)
Insecticidas , Policétidos , Animales , Insecticidas/farmacología , Insecticidas/química , Insecticidas/metabolismo , Sintasas Poliquetidas/metabolismo , Ingeniería Metabólica , Insectos
7.
ChemMedChem ; 18(1): e202200497, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36259357

RESUMEN

Aminoglycosides (AGs) are broad-spectrum antibiotics used to treat bacterial infections. Over the last two decades, studies have reported the potential of AGs in the treatment of genetic disorders caused by nonsense mutations, owing to their ability to induce the ribosomes to read through these mutations and produce a full-length protein. However, the principal limitation in the clinical application of AGs arises from their high toxicity, including nephrotoxicity and ototoxicity. In this study, five novel pseudo-trisaccharide analogs were synthesized by chemo-enzymatic synthesis by acid hydrolysis of commercially available AGs, followed by an enzymatic reaction using recombinant substrate-flexible KanM2 glycosyltransferase. The relationships between their structures and biological activities, including the antibacterial, nephrotoxic, and nonsense readthrough inducer (NRI) activities, were investigated. The absence of 1-N-acylation, 3',4'-dideoxygenation, and post-glycosyl transfer modifications on the third sugar moiety of AGs diminishes their antibacterial activities. The 3',4'-dihydroxy and 6'-hydroxy moieties regulate the in vitro nephrotoxicity of AGs in mammalian cell lines. The 3',4'-dihydroxy and 6'-methyl scaffolds are indispensable for the ex vivo NRI activity of AGs. Based on the alleviated in vitro antibacterial properties and nephrotoxicity, and the highest ex vivo NRI activity among the five compounds, a kanamycin analog (6'-methyl-3''-deamino-3''-hydroxykanamycin C) was selected as a novel AG hit for further studies on human genetic disorders caused by premature transcriptional termination.


Asunto(s)
Codón sin Sentido , Trisacáridos , Animales , Humanos , Aminoglicósidos/farmacología , Aminoglicósidos/química , Aminoglicósidos/uso terapéutico , Antibacterianos/química , Inhibidores de la Síntesis de la Proteína/farmacología , Mamíferos/genética
8.
Org Lett ; 24(39): 7188-7193, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36165456

RESUMEN

A genomic and spectroscopic signature-based search revealed a cycloaromatized enediyne, jejucarboside A (1), from a marine actinomycete strain. The structure of 1 was determined as a new cyclopenta[a]indene glycoside bearing carbonate functionality by nuclear magnetic resonance, high-resolution mass spectrometry (MS), MS/MS, infrared spectroscopy, and a modified Mosher's method. An iterative enediyne synthase pathway has been proposed for the putative biosynthesis of 1 by genomic analysis. Jejucarboside A exhibited cytotoxicity against the HCT116 colon carcinoma cells.


Asunto(s)
Actinobacteria , Indenos , Actinobacteria/química , Enediinos/química , Glicósidos/química , Indenos/química , Estructura Molecular , Espectrometría de Masas en Tándem
9.
BMC Genomics ; 23(1): 610, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35996099

RESUMEN

BACKGROUND: Nematodes are parasitic animals that cause over 100 billion US dollars loss in agricultural business. The whole-genomes of two Streptomyces strains, Streptomyces spectabilis KCTC9218T and Streptomyces sp. AN091965, were sequenced. Both strains produce spectinabilin, an antinematode drug. Its secondary metabolism was examined to aid the development of an efficient nematicidal drug-producing host strain. RESULTS: The whole-genome sequences of S. spectabilis KCTC9218T and Streptomyces sp. AN091965 were analyzed using PacBio and Illumina sequencing platforms, and assembled using hybrid methodology. The total contig lengths for KCTC9218T and AN091965 were 9.97 Mb and 9.84 Mb, respectively. A total of 8,374 and 8,054 protein-coding genes, as well as 39 and 45 secondary metabolite biosynthetic gene clusters were identified in KCTC9218T and AN091965, respectively. 18.4 ± 6.45 mg/L and 213.89 ± 21.30 mg/L of spectinabilin were produced by S. spectabilis KCTC9218T and Streptomyces sp. AN091965, respectively. Pine wilt disease caused by nematode was successfully prevented by lower concentration of spectinabilin injection than that of abamectin recommended by its manufacturer. Production of multiple antinematode drugs, including spectinabilin, streptorubin B, and undecylprodigiosin was observed in both strains using high-resolution liquid chromatography mass spectrometry (LC-MS) analysis. CONCLUSIONS: Whole-genome sequencing of spectinabilin-producing strains, coupled with bioinformatics and mass spectrometry analyses, revealed the production of multiple nematicidal drugs in the KCTC9218T and AN091965 strains. Especially, Streptomyces sp. AN091965 showed high production level of spectinabilin, and this study provides crucial information for the development of potential nematicidal drug producers.


Asunto(s)
Antinematodos , Metabolismo Secundario , Streptomyces , Animales , Antinematodos/farmacología , Familia de Multigenes , Nematodos/efectos de los fármacos , Análisis de Secuencia de ADN , Streptomyces/genética , Streptomyces/metabolismo , Secuenciación Completa del Genoma
10.
Mar Drugs ; 20(6)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35736203

RESUMEN

Two new lipo-decapeptides, namely taeanamides A and B (1 and 2), were discovered from the Gram-positive bacterium Streptomyces sp. AMD43, which was isolated from a mudflat sample from Anmyeondo, Korea. The exact molecular masses of 1 and 2 were revealed by high-resolution mass spectrometry, and the planar structures of 1 and 2 were elucidated using NMR spectroscopy. The absolute configurations of 1 and 2 were determined using a combined analysis of 1H-1H coupling constants and ROESY correlations, the advanced Marfey's method, and bioinformatics. The putative nonribosomal peptide synthetase pathway for the taeanamides was identified by analyzing the full genome sequence data of Streptomyces sp. AMD43. We also found that taeanamide A exhibited mild anti-tuberculosis bioactivity, whereas taeanamide B showed significant bioactivity against several cancer cell lines.


Asunto(s)
Streptomyces , Bacterias Grampositivas , Estructura Molecular , República de Corea , Streptomyces/química
11.
Org Lett ; 24(24): 4444-4448, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35699427

RESUMEN

Mohangamide A is a pseudo-dimeric nonribosomal peptide biosynthesized along with its monomer, WS9326A, and is expected to be formed by the head-to-tail cyclodimerization of linear WS9326A and another identical peptide chain with a different acyl side chain. In vitro experiments with the N-acetylcysteamine thioesters of the corresponding monomeric intermediates and thioesterase domains of Streptomyces sp. SNM55 and S. calvus showed that this cyclodimerization reaction is directed by the substrate structures and occurs only with both linear intermediates.


Asunto(s)
Streptomyces , Péptidos Cíclicos , Especificidad por Sustrato
12.
J Nat Prod ; 85(4): 804-814, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35294831

RESUMEN

A new nonribosomal peptide, nyuzenamide C (1), was discovered from riverine sediment-derived Streptomyces sp. DM14. Comprehensive analysis of the spectroscopic data of nyuzenamide C (1) revealed that 1 has a bicyclic backbone composed of six common amino acid residues (Asn, Leu, Pro, Gly, Val, and Thr) and four nonproteinogenic amino acid units, including hydroxyglycine, ß-hydroxyphenylalanine, p-hydroxyphenylglycine, and 3,ß-dihydroxytyrosine, along with 1,2-epoxypropyl cinnamic acid. The absolute configuration of 1 was proposed by J-based configuration analysis, the advanced Marfey's method, quantum mechanics-based DP4 calculations, and bioinformatic analysis of its nonribosomal peptide synthetase biosynthetic gene cluster. Nyuzenamide C (1) displayed antiangiogenic activity in human umbilical vein endothelial cells and induced quinone reductase in murine Hepa-1c1c7 cells.


Asunto(s)
Streptomyces , Aminoácidos/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Cinamatos , Células Endoteliales/metabolismo , Humanos , Ratones , Fragmentos de Péptidos , Péptidos/química , Streptomyces/química
13.
Front Microbiol ; 12: 725916, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512603

RESUMEN

With the constant emergence of multidrug-resistant gram-negative bacteria, interest in the development of new aminoglycoside (AG) antibiotics for clinical use has increased. The regioselective modification of AG scaffolds could be an efficient approach for the development of new antibiotics with improved therapeutic potency. We enzymatically synthesized three amikacin analogs containing structural modifications in the amino groups and evaluated their antibacterial activity and cytotoxicity. Among them, 6'-N-acyl-3″-N-methylated analogs showed improved antibacterial activity against the multidrug-resistant gram-negative bacteria tested, while exhibiting reduced in vitro nephrotoxicity compared to amikacin. This study demonstrated that the modifications of the 6'-amino group as well as the 3″-amino group have noteworthy advantages for circumventing the AG-resistance mechanism. The regiospecific enzymatic modification could be exploited to develop novel antibacterial agents with improved pharmacological potential.

14.
Cells ; 10(6)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073789

RESUMEN

Mesenchymal progenitor cells (MPCs) are a promising cell source for regenerative medicine because of their immunomodulatory properties, anti-inflammatory molecule secretion, and replacement of damaged cells. Despite these advantages, heterogeneity in functional potential and limited proliferation capacity of MPCs, as well as the lack of suitable markers for product potency, hamper the development of large-scale manufacturing processes of MPCs. Therefore, there is a sustained need to develop highly proliferative and standardized MPCs in vitro and find suitable functional markers for measuring product potency. In this study, three lines of pluripotent stem cell (PSC)-derived MPCs with high proliferative ability were established and compared with bone-marrow-derived MPCs using proliferation assays and microarrays. A total of six genes were significantly overexpressed (>10-fold) in the highest proliferative MPC line (CHA-hNT5-MPCs) and validated by qRT-PCR. However, only two of the genes (MYOCD and ODZ2) demonstrated a significant correlation with MPC senescence in vitro. Our study provides new gene markers for predicting replicative senescence and the available quantity of MPCs but may also help to guide the development of new standard criteria for manufacturing.


Asunto(s)
Antígenos de Diferenciación/biosíntesis , Proliferación Celular , Senescencia Celular , Células Madre Mesenquimatosas/metabolismo , Antígenos de Diferenciación/genética , Línea Celular , Perfilación de la Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos
15.
Angew Chem Int Ed Engl ; 60(36): 19766-19773, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33963654

RESUMEN

Systematic inactivation of nonribosomal peptide synthetase (NRPS) domains and translocation of the thioesterase (TE) domain revealed several unprecedented nonlinear NRPS assembly processes during the biosynthesis of the cyclodepsipeptide WS9326A in Streptomyces sp. SNM55. First, two sets of type ΙΙ TE (TEΙΙ)-like enzymes mediate the shuttling of activated amino acids between two sets of stand-alone adenylation (A)-thiolation (T) didomain modules and an "A-less" condensation (C)-T module with distinctive specificities and flexibilities. This was confirmed by the elucidation of the affinities of the A-T didomains for the TEΙΙs and its structure. Second, the C-T didomain module operates iteratively and independently from other modules in the same protein to catalyze two chain elongation cycles. Third, this biosynthetic pathway includes the first example of module skipping, where the interpolated C and T domains are required for chain transfer.


Asunto(s)
Depsipéptidos/biosíntesis , Péptido Sintasas/metabolismo , Depsipéptidos/química , Estructura Molecular , Streptomyces/química , Streptomyces/metabolismo
16.
J Org Chem ; 86(16): 11149-11159, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-33979513

RESUMEN

Two new nonribosomal peptides, bonnevillamides D and E (1 and 2), have been discovered in Streptomyces sp. UTZ13 isolated from the carrion beetle, Nicrophorus concolor. Combinational analysis of the UV, MS, and NMR spectroscopic data revealed that their planar structures were comprised of dichlorinated linear peptides containing nonproteinogenic amino acid residues, such as 4-methylazetidinecarboxylic acid and 4-O-acetyl-5-methylproline. The configurations of bonnevillamides D and E (1 and 2) were determined based on ROESY correlations, the advanced Marfey's method, phenylglycine methyl ester derivatization, molecular modeling, and circular dichroism spectroscopy. The nonribosomal peptide synthetase biosynthetic pathway of bonnevillamides D and E has been proposed using bioinformatic analysis of the whole-genome sequence data of Streptomyces sp. UTZ13. Their biological activity toward the aggregation of amyloid-ß, which is one of the key pathogenic proteins in Alzheimer's disease, was evaluated using a thioflavin T assay and gel electrophoresis. Bonnevillamides D and E reversed the fibril formation by inducing the monomerization of amyloid-ß aggregates.


Asunto(s)
Actinobacteria , Azetidinas , Escarabajos , Streptomyces , Animales , Péptidos
17.
Org Lett ; 23(9): 3359-3363, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33885319

RESUMEN

Dumulmycin (1) was isolated from Streptomyces sp. DM28, a bacterial strain from a riverine sediment sample. The structure of 1 was elucidated as a bicyclic macrolide possessing 19-membered and 5-membered rings by spectroscopic analysis. The stereochemistry of 1 was determined by J-based configuration analysis, ROESY NMR data, DP4 calculations, and the modified Mosher's method. Genetic analysis identified a trans-acyltransferase polyketide biosynthetic gene cluster for 1. Dumulmycin exhibited in vitro antitubercular activity (MIC50 = 27.1 µM).


Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Streptomyces/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Macrólidos/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Policétidos/química
19.
J Ind Microbiol Biotechnol ; 48(3-4)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-33693777

RESUMEN

Clavulanic acid (CA) produced by Streptomyces clavuligerus is a clinically important ß-lactamase inhibitor. It is known that glycerol utilization can significantly improve cell growth and CA production of S. clavuligerus. We found that the industrial CA-producing S. clavuligerus strain OR generated by random mutagenesis consumes less glycerol than the wild-type strain; we then developed a mutant strain in which the glycerol utilization operon is overexpressed, as compared to the parent OR strain, through iterative random mutagenesis and reporter-guided selection. The CA production of the resulting S. clavuligerus ORUN strain was increased by approximately 31.3% (5.21 ± 0.26 g/l) in a flask culture and 17.4% (6.11 ± 0.36 g/l) in a fermenter culture, as compared to that of the starting OR strain. These results confirmed the important role of glycerol utilization in CA production and demonstrated that reporter-guided mutant selection is an efficient method for further improvement of randomly mutagenized industrial strains.


Asunto(s)
Ácido Clavulánico/biosíntesis , Glicerol/metabolismo , Streptomyces/metabolismo , Reactores Biológicos , Mutagénesis , Operón , Streptomyces/genética
20.
Front Microbiol ; 12: 626881, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679647

RESUMEN

Ohmyungsamycins (OMSs) A and B are cyclic depsipeptides produced by marine Streptomyces strains, which are synthesized by a non-ribosomal peptide synthetase. Notably, OMS A exhibits more potent activity against Mycobacterium tuberculosis and human cancer cells than OMS B. The substrate promiscuous adenylation (A) domain in the second module of OMS synthetase recruits either L-Val or L-Ile to synthesize OMSs A and B, respectively. Engineering of the substrate-coding residues of this A domain increased OMS A production by 1.2-fold, coupled with a drastic decrease in OMS B production. Furthermore, the culture conditions (sea salt concentration, inoculum size, and the supply of amino acids to serve as building blocks for OMS) were optimized for OMS production in the wild-type strain. Finally, cultivation of the A2-domain-engineered strain under the optimized culture conditions resulted in up to 3.8-fold increases in OMS A yields and an 8.4-fold decrease in OMS B production compared to the wild-type strain under the initial culture conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...