Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38591595

RESUMEN

Triboelectric nanogenerators (TENGs) have gained significant attention as promising energy-harvesting devices that convert mechanical energy into electrical energy through charge separation induced by friction and electrostatic induction. In this study, we explore the utilization of biowaste shrimp shell-extracted chitin nanofiber (ChNF) as a viable eco-friendly material for TENG applications. Composite materials were prepared by incorporating ChNF into natural rubber (NRL) at loading levels of 0.1 and 0.2 wt% (NRL/ChNF) to form the TENG triboelectric layer. ChNFs with a uniform width of approximately 10-20 nm were successfully extracted from the shrimp shells through a simple mechanical procedure. The NRL/ChNF composites exhibited enhanced mechanical properties, as evidenced by a higher Young's modulus (3.4 GPa) compared to pure NRL. Additionally, the NRL/ChNF composites demonstrated an increased dielectric constant of 3.3 at 0.1 MHz. Moreover, the surface potential difference of NRL increased from 0.182 V to 1.987 V in the NRL/ChNF composite. When employed as the triboelectric layer in TENG, the NRL/ChNF composites exhibited significant improvement in their output voltage, with it reaching 106.04 ± 2.3 V. This enhancement can be attributed to the increased dielectric constant of NRL/ChNF, leading to enhanced charge exchange and charge density. This study presents a straightforward and environmentally friendly technique for preparing sustainable natural materials suitable for energy-harvesting devices.

2.
Nanoscale Adv ; 6(3): 846-854, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298583

RESUMEN

GaAsBi nanowires (NWs) are promising for optoelectronic applications in the near- and mid-infrared wavelengths due to the optical properties of the Bi-containing compound and the nanowire structure benefits. In general, synthesizing the GaAsBi NWs results in uncontrollable metamorphic structures and spontaneous Bi-containing droplets. Here, we explore the potential of using the droplets as catalysts to form GaAsBi nanowires (hence, the vapor-liquid-solid growth mechanism) on GaAs (111) substrates by molecular beam epitaxy. The GaAsBi NWs experience a two-step growth: Bi droplet deposition and GaAsBi nanowire growth. The optimal droplet deposition temperature (250 °C) is defined based on the droplet morphologies. The gradation of growth temperatures of GaAsBi NWs to 250 °C, 300 °C, and 350 °C results in high-aspect-ratio NWs, tilted NWs, and low-aspect-ratio NWs, respectively. Structural investigation shows that the optimal (low-aspect-ratio) NW has the composition of GaAs0.99Bi0.01 with the catalytic droplet of Ga0.99Bi0.01 decorated on its tip. Detailed structural analyses show that the Bi content progressively increases from the NW stem to the wire-substrate interface. The satisfying GaAsBi NW morphology does not warrant the expected superior optical results. Photoluminescence study suggests that the NW has a strong carrier thermalization from the NW stem to the wire-substrate interface influenced by the graded NW growth temperature profile.

3.
Sensors (Basel) ; 22(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36502032

RESUMEN

A highly sensitive and selective formaldehyde sensor was successfully fabricated using hybrid materials of nitrogen-doped double-walled carbon nanotubes (N-DWCNTs) and polyvinylpyrrolidone (PVP). Double-walled carbon nanotubes (DWCNTs) and N-DWCNTs were produced by high-vacuum chemical vapor deposition using ethanol and benzylamine, respectively. Purified DWCNTs and N-DWCNTs were dropped separately onto the sensing substrate. PVP was then dropped onto pre-dropped DWCNT and N-DWCNTs (hereafter referred to as PVP/DWCNTs and PVP/N-DWCNTs, respectively). As-fabricated sensors were used to find 1,2-dichloroethane, dichloromethane, formaldehyde and toluene vapors in parts per million (ppm) at room temperature for detection measurement. The sensor response of N-DWCNTs, PVP/DWCNTs and PVP/N-DWCNTs sensors show a high response to formaldehyde but a low response to 1,2-dichloroethane, dichloromethane and toluene. Remarkably, PVP/N-DWCNTs sensors respond sensitively and selectively towards formaldehyde vapor, which is 15 times higher than when using DWCNTs sensors. This improvement could be attributed to the synergistic effect of the polymer swelling and nitrogen-sites in the N-DWCNTs. The limit of detection (LOD) of PVP/N-DWCNTs was 15 ppm, which is 34-fold higher than when using DWCNTs with a LOD of 506 ppm. This study demonstrated the high sensitivity and selectivity for formaldehyde-sensing applications of high-performance PVP/N-DWCNTs hybrid materials.


Asunto(s)
Nanotubos de Carbono , Povidona , Nitrógeno , Formaldehído , Gases , Tolueno
4.
Nanoscale ; 14(12): 4484-4494, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35234770

RESUMEN

Zinc oxide (ZnO) nanowires have shown their potential in isolation of cancer-related biomolecules such as extracellular vesicles (EVs), RNAs, and DNAs for early diagnosis and therapeutic development of diseases. Since the function of inorganic nanowires changes depending on their morphology, previous studies have established strategies to control the morphology and have demonstrated attainment of improved properties for gas and organic compound detection, and for dye-sensitized solar cells and photoelectric conversion performance. Nevertheless, crystallinity and morphology of ZnO nanowires for capturing EVs, an important biomarker of cancer, have not yet been discussed. Here, we fabricated ZnO nanowires with different crystallinities and morphologies using an ammonia-assisted hydrothermal method, and we comprehensively analyzed the crystalline nature and oriented growth of the synthesized nanowires by X-ray diffraction and selected area electron diffraction using high resolution transmission electron microscopy. In evaluating the performance of label-free EV capture in a microfluidic device platform, we found both the crystallinity and morphology of ZnO nanowires affected EV capture efficiency. In particular, the zinc blende phase was identified as important for crystallinity, while increasing the nanowire density in the array was important for morphology to improve EV capture performance. These results highlighted that the key physicochemical properties of the ZnO nanowires were related to the EV capture performance.


Asunto(s)
Vesículas Extracelulares , Nanocables , Óxido de Zinc , Microscopía Electrónica de Transmisión , Nanocables/química , Difracción de Rayos X , Óxido de Zinc/química
5.
Phys Chem Chem Phys ; 22(36): 20482-20498, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32966427

RESUMEN

Sb2O3-loaded NaWO4-doped WO3 nanorods were fabricated with varying Sb contents from 0 to 2 wt% by precipitation/impregnation methods and their p-type acetylene (C2H2) gas-sensing mechanisms were rigorously analyzed. Material characterization by X-ray diffraction, X-ray photoelectron spectroscopy, scanning transmission electron microscopy and nitrogen adsorption indicated the construction of short NaWO4-doped monoclinic WO3 nanorods loaded with very fine Sb2O3 nanoparticles. The sensors were fabricated by powder pasting and spin coating and their gas-sensing characteristics were evaluated towards 0.08-1.77 vol% C2H2 at 200-350 °C in dry air. The gas-sensing properties of the NaWO4-doped WO3 sensor with the optimum Sb content of 1 wt% showed the highest p-type response of ∼250.2 to 1.77 vol% C2H2, which was more than 20 times as high as that of the unloaded one at the best working temperature of 250 °C. Furthermore, the Sb2O3-loaded sensor offered high C2H2 selectivity against CH4, H2, C3H6O, C2H5OH, HCHO, CH3OH, C8H10, C7H8, C2H4 and NO2. Mechanisms responsible for the observed p-type sensing and response enhancement behaviors were proposed based on the NaWO4-doped WO3-Sb2O3 (p-n) heterointerfaces and catalytic spillover effects. Consequently, the Sb2O3-loaded NaWO4-doped WO3 nanorods have potential as alternative p-type gas sensors for selective and sensitive C2H2 detection in various industrial applications.

6.
Phys Chem Chem Phys ; 22(10): 5439-5448, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32016214

RESUMEN

Layered-layered composite (xLi2MnO3·(1 -x) LiMO2, M = Mn, Ni, Co, and Fe) cathode materials have attracted much attention as cathodes for high energy density lithium ion batteries. However, these materials are structurally unstable resulting from complicated phase transformation mechanisms during cycling. Additionally, the complex structural characteristics and structural stability of these materials largely depend on their preparation methods. Studying the correlation between multiscale structural properties and preparation methods is important in the development of layered-layered composite cathode materials. In this work, 0.5Li2MnO3·0.5LiCoO2 composite materials were prepared with different heating and cooling rates with a maximum temperature of 600 °C. The structural properties of the 0.5Li2MnO3·0.5LiMO2 composite materials were investigated using combined in situ X-ray absorption spectroscopy (XAS), in situ X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high resolution transmission electron microscopy (HRTEM) techniques. Heating and cooling rates have no significant effect on either the crystal or local atomic structures of the prepared samples. However, the microstructure was critically important for its impact on electrochemical properties.

7.
Phys Chem Chem Phys ; 21(39): 21984-21990, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31552954

RESUMEN

Lithium-rich layered oxide materials, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Fe, Co, Ni, etc.), are a promising candidate for use as cathode materials in the batteries of electric vehicles (EVs). This is due to their high energy density (∼900 W h kg-1), which is larger than those of the currently used commercial cathode materials. Moreover, EV technologies require lithium ion batteries with a high rate performance to achieve short charging times. The high rate property largely depends on the electrochemical properties of the electrodes in these batteries. However, the correlation between the cycling rate, structural stability and electrochemical properties of cathode materials is not clearly understood. In this work, the influence of cycling rate on structural transition behaviors and cycling stability of a 0.5Li2MnO3·0.5LiCoO2 composite-based material was investigated. The experimental results reveal that cycling rates significantly affect the activation of the Li2MnO3 component. A high cycling rate retards Li2MnO3 activation, leading to a smaller spinel phase transition and a higher cycling stability.

8.
Sci Rep ; 9(1): 427, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30674922

RESUMEN

Lithium rich layered oxide xLi2MnO3∙(1-x)LiMO2 (M = Mn, Co, Ni, etc.) materials are promising cathode materials for next generation lithium ion batteries. However, the understanding of their electrochemical kinetic behaviors is limited. In this work, the phase separation behaviors and electrochemical kinetics of 0.5Li2MnO3∙0.5LiCoO2 materials with various Li2MnO3 domain sizes were studied. Despite having similar morphological, crystal and local atomic structures, materials with various Li2MnO3 domain sizes exhibited different phase separation behavior resulting in disparate lithium ion transport kinetics. For the first few cycles, the 0.5Li2MnO3∙0.5LiCoO2 material with a small Li2MnO3 domain size had higher lithium ion diffusion coefficients due to shorter diffusion path lengths. However, after extended cycles, the 0.5Li2MnO3∙0.5LiCoO2 material with larger Li2MnO3 domain size showed higher lithium ion diffusion coefficients, since the larger Li2MnO3 domain size could retard structural transitions. This leads to fewer structural rearrangements, reduced structural disorders and defects, which allows better lithium ion mobility in the material.

9.
RSC Adv ; 9(38): 21724-21732, 2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35518880

RESUMEN

In this study, nitrogen self-doped activated carbons (ACs) obtained via the direct activation of Samanea saman green leaves (SSLs) for high energy density supercapacitors were investigated. The SSL-derived direct-activated carbons (hereinafter referred to SD-ACs) were synthesized by impregnating sodium hydroxide as an activating agent and heating up to 720 °C without a hydrothermal carbonization or pyrolysis step. The optimum condition was investigated by varying the weight ratio of raw SSLs to NaOH. Surpassing the ACs derived from the two-step convention method, SD-ACs showed superior properties, including a higher surface area (2930 m2 g-1), total pore volume (1.37 cm3 g-1) and nitrogen content (4.6 at%). Moreover, SD-ACs exhibited enhanced electrochemical properties with specific gravimetric and volumetric capacitances of 179 F g-1 and 88 F cm-3 in an organic electrolyte, respectively, a high capacitance retention of approximately 87% at a current density of 0.5 A g-1 and excellent cycling stability of 97.5% after 3000 cycles at a current density of 5 A g-1. Moreover, the potential window of the supercapacitor cell was extended to 3.5 V with a significantly enhanced energy density of up to 79 W h kg-1. These results demonstrate that the direct activation of nitrogen-enriched SSLs offers advantages in terms of simplicity, low-cost and sustainable synthetic route to achieve nitrogen self-doped ACs for high energy density supercapacitors, which exhibit superior properties to that of ACs prepared via the conventional method.

10.
Microsc Microanal ; 24(2): 156-162, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29699597

RESUMEN

Green culms of bamboo and charcoal of Bambusa multiplex were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) mapping. A dynamic observation of the initial stage of carbonization was also performed in-situ by heating a radial longitudinal section of the bamboo culm at a rate of 20°C/min up to 500°C. EDS mapping of the green bamboo culms detected Si signals in the harder cells such as the epidermis (Ep), cortex (Cor) and vascular bundle sheath (Bs) and between these cells as silicon oxide particles. Appreciable morphological change of the cells occurred in a temperature range of about 300-400°C due to the decomposition of cellulose that is the main component of the bamboo cells. The charcoal of the bamboo culm has a skin layer which originates from the Ep and Cor and the main central cylinder with many openings that originate from the expanded xylem and phloem holes. During carbonization, the Si atoms in the Ep and Cor were segregated as thin silicon oxide layers onto both the sides of the skin layer and the Si included in the Bs fibers and parenchyma cells accumulated near the walls of the openings.

11.
Microsc Res Tech ; 81(7): 761-769, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29675989

RESUMEN

Green culms of Bambusa multiplex and the bamboo charcoal carbonized from the green culms at 700°C have been studied by means of X-ray diffraction, X-ray fluorescent element analysis, analytical scanning electron microscopy, and analytical scanning transmission electron microscopy (STEM), aiming at industrial applications as raw materials for functional devices and substances. It is revealed that the green culms and the charcoal contain a significant amount of Si, in particular, ∼18 wt % in the skin. The green culms comprise amorphous and crystalline celluloses. The charcoal has a so-called amorphous structure which is composed of randomly distributed carbon nanotubes and fibers. The growth of Ag-doped activated charcoal powders that were produced by two different methods using this charcoal powder has also been studied.


Asunto(s)
Bambusa/química , Carbón Orgánico/química , Tallos de la Planta/química , Bambusa/ultraestructura , Celulosa/química , Color , Microscopía Electrónica de Rastreo , Nanotubos de Carbono , Tallos de la Planta/ultraestructura , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...