Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chem Res Toxicol ; 34(12): 2471-2484, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34841876

RESUMEN

It is widely recognized that the toxicity of mercury (Hg) is attenuated by the simultaneous administration of selenium (Se) compounds in various organisms. In this study, we revealed the mechanisms underlying the antagonistic effect of sodium selenite (Na2SeO3) on inorganic Hg (Hg2+) toxicity in human hepatoma HepG2 cells. Observations by transmission electron microscopy indicated that HgSe (tiemannite) granules of up to 100 nm in diameter were accumulated in lysosomal-like structures in the cells. The HgSe granules were composed of a number of HgSe nanoparticles, each measuring less than 10 nm in diameter. No accumulation of HgSe nanoparticles in lysosomes was observed in the cells exposed to chemically synthesized HgSe nanoparticles. This suggests that intracellular HgSe nanoparticles were biologically generated from Na2SeO3 and Hg2+ ions transported into the cells and were not derived from HgSe nanoparticles formed in the extracellular fluid. Approximately 85% of biogenic HgSe remained in the cells at 72 h post culturing, indicating that biogenic HgSe was hardly excreted from the cells. Moreover, the cytotoxicity of Hg2+ was ameliorated by the simultaneous exposure to Na2SeO3 even before the formation of insoluble HgSe nanoparticles. Our data confirmed for the first time that HepG2 cells can circumvent the toxicity of Hg2+ through the direct interaction of Hg2+ with a reduced form of Se (selenide) to form HgSe nanoparticles via a Hg-Se soluble complex in the cells. Biogenic HgSe nanoparticles are considered the ultimate metabolite in the Hg detoxification process.


Asunto(s)
Mercurio/efectos adversos , Nanopartículas/efectos adversos , Selenio/efectos adversos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Mercurio/metabolismo , Nanopartículas/metabolismo , Selenio/metabolismo , Células Tumorales Cultivadas
2.
Langmuir ; 34(19): 5615-5622, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29664647

RESUMEN

Artificial bilayer lipid membranes (BLMs) provide well-defined systems for investigating the fundamental properties of membrane proteins, including ion channels, and for screening the effect of drugs that act on them. However, the application of this technique is limited due to the low stability and low reconstitution efficiency of the process. We previously reported on improving the stability of BLM based on the fabrication of microapertures having a tapered edge in SiO2/Si3N4 septa and efficient ion channel incorporation based on vesicle fusion accelerated by a centrifugal force. Although the BLM stability and incorporation probability were dramatically improved when these approaches were used, some BLMs were ruptured when subjected to a centrifugal force. To further improve the BLM stability, we investigated the effect of modifying the surface of the SiO2/Si3N4 septa on the stability of BLM suspended in the septa. The modified surfaces were characterized in terms of hydrophobicity, lipophobicity, and surface roughness. Diffusion coefficients of the lipid monolayers formed on the modified surfaces were also determined. Highly fluidic lipid monolayers were formed on the amphiphobic substrates that had been modified with long-chain perfluorocarbons. Free-standing BLMs formed in amphiphobic septa showed a much higher mechanical stability, including tolerance to water movement and applied centrifugal forces with and without proteoliposomes, than those formed in the septa that had been modified with a short alkyl chain. These results demonstrate that highly stable BLMs are formed when the surface of the septa has amphiphobic properties. Because highly fluidic lipid monolayers that are formed on the septa seamlessly connect with BLMs in a free-standing region, the high fluidity of the lipids contributes to decreasing potential damage to BLMs when mechanical stresses are applied. This approach to improve the BLM stability increases the experimental efficiency of the BLM systems and will contribute to the development of high-throughput platforms for functional assays of ion channel proteins.


Asunto(s)
Membrana Dobles de Lípidos/química , Canales Iónicos/química , Fusión de Membrana , Dióxido de Silicio/química , Estrés Mecánico
3.
Sci Rep ; 7(1): 17736, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29255199

RESUMEN

The self-assembled bilayer lipid membrane (BLM) is the basic component of the cell membrane. The reconstitution of ion channel proteins in artificially formed BLMs represents a well-defined system for the functional analysis of ion channels and screening the effects of drugs that act on them. However, because BLMs are unstable, this limits the experimental throughput of BLM reconstitution systems. Here we report on the formation of mechanically stable solvent-free BLMs in microfabricated apertures with defined nano- and micro-tapered edge structures. The role of such nano- and micro-tapered structures on the stability of the BLMs was also investigated. Finally, this BLM system was combined with a cell-free synthesized human ether-a-go-go-related gene channel, a cardiac potassium channel whose relation to arrhythmic side effects following drug treatment is well recognized. Such stable BLMs as these, when combined with a cell-free system, represent a potential platform for screening the effects of drugs that act on various ion-channel genotypes.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Membrana Dobles de Lípidos/metabolismo , Sistemas Microelectromecánicos/métodos , Membrana Celular/metabolismo , Canales de Potasio Éter-A-Go-Go/fisiología , Humanos , Canales Iónicos/metabolismo , Membrana Dobles de Lípidos/síntesis química , Microtecnología/métodos , Canales de Potasio/metabolismo , Canales de Potasio/fisiología , Compuestos de Silicona , Solventes
4.
Sci Rep ; 7(1): 17905, 2017 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-29263355

RESUMEN

The lipid bilayer environment around membrane proteins strongly affects their structure and functions. Here, we aimed to study the fusion of proteoliposomes (PLs) derived from cultured cells with an artificial lipid bilayer membrane and the distribution of the PL components after the fusion. PLs, which were extracted as a crude membrane fraction from Chinese hamster ovary (CHO) cells, formed isolated domains in a supported lipid bilayer (SLB), comprising phosphatidylcholine (PC), phosphatidylethanolamine (PE), and cholesterol (Chol), after the fusion. Observation with a fluorescence microscope and an atomic force microscope showed that the membrane fusion occurred selectively at microdomains in the PC + PE + Chol-SLB, and that almost all the components of the PL were retained in the domain. PLs derived from human embryonic kidney 293 (HEK) cells also formed isolated domains in the PC + PE + Chol-SLB, but their fusion kinetics was different from that of the CHO-PLs. We attempted to explain the mechanism of the PL-SLB fusion and the difference between CHO- and HEK-PLs, based on a kinetic model. The domains that contained the whole cell membrane components provided environments similar to that of natural cell membranes, and were thus effective for studying membrane proteins using artificial lipid bilayer membranes.


Asunto(s)
Membrana Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Fusión de Membrana , Membranas Artificiales , Animales , Células CHO , Membrana Celular/química , Colesterol/química , Colesterol/metabolismo , Cricetinae , Cricetulus , Células HEK293 , Humanos , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo
5.
Biophys J ; 110(10): 2207-15, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27224486

RESUMEN

Artificially formed bilayer lipid membranes (BLMs) provide well-defined systems for functional analyses of various membrane proteins, including ion channels. However, difficulties associated with the integration of membrane proteins into BLMs limit the experimental efficiency and usefulness of such BLM reconstitution systems. Here, we report on the use of centrifugation to more efficiently reconstitute human ion channels in solvent-free BLMs. The method improves the probability of membrane fusion. Membrane vesicles containing the human ether-a-go-go-related gene (hERG) channel, the human cardiac sodium channel (Nav1.5), and the human GABAA receptor (GABAAR) channel were formed, and the functional reconstitution of the channels into BLMs via vesicle fusion was investigated. Ion channel currents were recorded in 67% of the BLMs that were centrifuged with membrane vesicles under appropriate centrifugal conditions (14-55 × g). The characteristic channel properties were retained for hERG, Nav1.5, and GABAAR channels after centrifugal incorporation into the BLMs. A comparison of the centrifugal force with reported values for the fusion force revealed that a centrifugal enhancement in vesicle fusion was attained, not by accelerating the fusion process but by accelerating the delivery of membrane vesicles to the surface of the BLMs, which led to an increase in the number of membrane vesicles that were available for fusion. Our method for enhancing the probability of vesicle fusion promises to dramatically increase the experimental efficiency of BLM reconstitution systems, leading to the realization of a BLM-based, high-throughput platform for functional assays of various membrane proteins.


Asunto(s)
Centrifugación , Canal de Potasio ERG1/metabolismo , Técnicas In Vitro , Membrana Dobles de Lípidos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Receptores de GABA-A/metabolismo , Animales , Células CHO , Cricetulus , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Fusión de Membrana , Potenciales de la Membrana , Microscopía de Fuerza Atómica , Técnicas de Placa-Clamp
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA