Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7638, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266515

RESUMEN

Chronic fibrotic tissue disrupts various organ functions. Despite significant advances in therapies, mortality and morbidity due to heart failure remain high, resulting in poor quality of life. Beyond the cardiomyocyte-centric view of heart failure, it is now accepted that alterations in the interstitial extracellular matrix (ECM) also play a major role in the development of heart failure. Here, we show that protein kinase N (PKN) is expressed in cardiac fibroblasts. Furthermore, PKN mediates the conversion of fibroblasts into myofibroblasts, which plays a central role in secreting large amounts of ECM proteins via p38 phosphorylation signaling. Fibroblast-specific deletion of PKN led to a reduction of myocardial fibrotic changes and cardiac dysfunction in mice models of ischemia-reperfusion or heart failure with preserved ejection fraction. Our results indicate that PKN is a therapeutic target for cardiac fibrosis in heart failure.


Asunto(s)
Fibroblastos , Fibrosis , Insuficiencia Cardíaca , Miocardio , Miofibroblastos , Proteína Quinasa C , Animales , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/genética , Miofibroblastos/metabolismo , Miofibroblastos/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Ratones , Miocardio/patología , Miocardio/metabolismo , Proteína Quinasa C/metabolismo , Proteína Quinasa C/genética , Masculino , Humanos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados , Matriz Extracelular/metabolismo , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Transducción de Señal
2.
Eur Heart J Open ; 3(2): oead028, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37026023

RESUMEN

Aims: Coronary microvascular dysfunction (CMD) is related to the pathophysiology, mortality, and morbidity of heart failure with preserved ejection fraction (HFpEF). A novel single-photon emission computed tomography (SPECT) camera with cadmium zinc telluride (CZT) detectors allows for the quantification of absolute myocardial blood flow and myocardial flow reserve (MFR) in patients with coronary artery disease. However, the potential of CZT-SPECT assessing for CMD has never been evaluated in patients with HFpEF. Methods and results: The clinical records of 127 consecutive patients who underwent dynamic CZT-SPECT were retrospectively reviewed. Rest and stress scanning were started simultaneously with 3 and 9 MBq/kg of 99mTc-sestamibi administration, respectively. Dynamic CZT-SPECT imaging data were analysed using a net-retention model with commercially available software. Transthoracic echocardiography was performed in all patients. The MFR value was significantly lower in the HFpEF group (mean ± SEM = 2.00 ± 0.097) than that in the non-HFpEF group (mean ± SEM = 2.74 ± 0.14, P = 0.0004). A receiver operating characteristic analysis indicated that if a cut-off value of 2.525 was applied, MFR could efficiently distinguish HFpEF from non-HFpEF. Heart failure with preserved ejection fraction had a consistently low MFR, regardless of the diastolic dysfunction score. Heart failure with preserved ejection fraction patients with MFR values lower than 2.075 had a significantly higher incidence of heart failure exacerbation. Conclusion: Myocardial flow reserve assessed by CZT-SPECT was significantly reduced in patients with HFpEF. A lower MFR was associated with a higher hospitalization rate in these patients. Myocardial flow reserve assessed by CZT-SPECT has the potential to predict future adverse events and stratify the severity of disease in patients with HFpEF.

3.
Biomed Pharmacother ; 146: 112566, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34954642

RESUMEN

BACKGROUND: G protein-coupled receptors (GPCRs) regulate the pathological and physiological functions of the heart. GPCR antagonists are widely used in the treatment of chronic heart failure. Despite therapeutic advances in the treatments for cardiovascular diseases, heart failure is a major clinical health problem, with significant mortality and morbidity. Corticotropin releasing hormone receptor 2 (CRHR2) is highly expressed in cardiomyocytes, and cardiomyocyte-specific deletion of the genes encoding CRHR2 suppresses pressure overload-induced cardiac dysfunction. This suggests that the negative modulation of CRHR2 may prevent the progression of heart failure. However, there are no systemic drugs against CRHR2. FINDINGS: We developed a novel, oral, small molecule antagonist of CRHR2, RQ-00490721, to investigate the inhibition of CRHR2 as a potential therapeutic approach for the treatment of heart failure. In vitro, RQ-00490721 decreased CRHR2 agonist-induced 3', 5'-cyclic adenosine monophosphate (cAMP) production. In vivo, RQ-00490721 showed sufficient oral absorption and better distribution to peripheral organs than to the central nervous system. Oral administration of RQ-00490721 inhibited the CRHR2 agonist-induced phosphorylation of cAMP-response element binding protein (CREB) in the heart, which regulates a transcription activator involved in heart failure. RQ-00490721 administration was not found to affect basal heart function in mice but protected them from pressure overload-induced cardiac dysfunction. INTERPRETATION: Our results suggest that RQ-00490721 is a promising agent for use in the treatment of chronic heart failure.


Asunto(s)
Insuficiencia Cardíaca/patología , Miocitos Cardíacos/efectos de los fármacos , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Administración Oral , Animales , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria
4.
FASEB J ; 35(12): e22048, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34807469

RESUMEN

In the heart, fatty acid is a major energy substrate to fuel contraction under aerobic conditions. Ischemia downregulates fatty acid metabolism to adapt to the limited oxygen supply, making glucose the preferred substrate. However, the mechanism underlying the myocardial metabolic shift during ischemia remains unknown. Here, we show that lipoprotein lipase (LPL) expression in cardiomyocytes, a principal enzyme that converts triglycerides to free fatty acids and glycerol, increases during myocardial infarction (MI). Cardiomyocyte-specific LPL deficiency enhanced cardiac dysfunction and apoptosis following MI. Deficiency of aquaporin 7 (AQP7), a glycerol channel in cardiomyocytes, increased the myocardial infarct size and apoptosis in response to ischemia. Ischemic conditions activated glycerol-3-phosphate dehydrogenase 2 (GPD2), which converts glycerol-3-phosphate into dihydroxyacetone phosphate to facilitate adenosine triphosphate (ATP) synthesis from glycerol. Conversely, GPD2 deficiency exacerbated cardiac dysfunction after acute MI. Moreover, cardiomyocyte-specific LPL deficiency suppressed the effectiveness of peroxisome proliferator-activated receptor alpha (PPARα) agonist treatment for MI-induced cardiac dysfunction. These results suggest that LPL/AQP7/GPD2-mediated glycerol metabolism plays an important role in preventing myocardial ischemia-related damage.


Asunto(s)
Acuaporinas/metabolismo , Cardiomiopatías/prevención & control , Glicerol/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Hipoxia/fisiopatología , Isquemia/prevención & control , Lipoproteína Lipasa/fisiología , Proteínas Mitocondriales/metabolismo , Animales , Acuaporinas/genética , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Glicerolfosfato Deshidrogenasa/genética , Isquemia/etiología , Isquemia/metabolismo , Isquemia/patología , Masculino , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética
5.
Intern Med ; 60(18): 2979-2984, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-33776013

RESUMEN

High-output heart failure caused by a tumor-related arteriovenous fistula in adults is a rare clinical condition. We herein report a case of high-output heart failure caused by an arteriovenous fistula associated with renal cell carcinoma and a literature review of 29 published cases to date. Renal cell carcinoma seems to be the most common underlying tumor. For the diagnosis, right heart catheterization and enhanced computed tomography (CT) are considered useful. The removal of the underlying tumor and arteriovenous fistula is the best treatment for heart failure.


Asunto(s)
Fístula Arteriovenosa , Carcinoma de Células Renales , Insuficiencia Cardíaca , Neoplasias Renales , Fístula Arteriovenosa/diagnóstico , Fístula Arteriovenosa/diagnóstico por imagen , Carcinoma de Células Renales/complicaciones , Carcinoma de Células Renales/diagnóstico , Cateterismo Cardíaco , Insuficiencia Cardíaca/etiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...