Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 3103, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36813909

RESUMEN

Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a global pandemic. Although several vaccines targeting SARS-CoV-2 spike proteins protect against COVID-19 infection, mutations affecting virus transmissibility and immune evasion potential have reduced their efficacy, leading to the need for a more efficient strategy. Available clinical evidence regarding COVID-19 suggests that endothelial dysfunction with thrombosis is a central pathogenesis of progression to systemic disease, in which overexpression of plasminogen activator inhibitor-1 (PAI-1) may be important. Here we developed a novel peptide vaccine against PAI-1 and evaluated its effect on lipopolysaccharide (LPS)-induced sepsis and SARS-CoV-2 infection in mice. Administration of LPS and mouse-adapted SARS-CoV-2 increased serum PAI-1 levels, although the latter showed smaller levels. In an LPS-induced sepsis model, mice immunized with PAI-1 vaccine showed reduced organ damage and microvascular thrombosis and improved survival compared with vehicle-treated mice. In plasma clot lysis assays, vaccination-induced serum IgG antibodies were fibrinolytic. However, in a SARS-CoV-2 infection model, survival and symptom severity (i.e., body weight reduction) did not differ between vaccine- and vehicle-treated groups. These results indicate that although PAI-1 may promote the severity of sepsis by increasing thrombus formation, it might not be a major contributor to COVID-19 exacerbation.


Asunto(s)
COVID-19 , Inhibidor 1 de Activador Plasminogénico , Sepsis , Animales , Ratones , Anticuerpos Antivirales , Modelos Animales de Enfermedad , Lipopolisacáridos , SARS-CoV-2
2.
Hypertens Res ; 46(4): 1000-1008, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36646881

RESUMEN

The number of chronic kidney disease (CKD) patients is increasing worldwide, and it is necessary to diagnose CKD patients in earlier stages to improve their prognosis. Previously, in a study using human samples, we reported that DNA methylation and DNA damage in podocytes are potential markers for kidney function decline in IgA nephropathy; however, these candidate markers have not been adequately investigated in other glomerular diseases. Here, we report that the association of podocyte DNA damage and DNA methylation with eGFR decline and proteinuria differs depending on the type of glomerular disease. Patients diagnosed with minor glomerular abnormality (MGA, n = 33), membranous nephropathy (MN, n = 9) or diabetic nephropathy (DN, n = 10) following kidney biopsy at Keio University Hospital from 2015 to 2017 were included. In MGA patients, both podocyte DNA damage and glomerular DNA methylation were associated with the severity of proteinuria. In DN patients, podocyte DNA double-strand breaks (DSBs) and glomerular DNA methylation were associated with an eGFR decline. When patients with urinary protein levels of more than 1 g/gCr were examined, fewer podocyte DNA DSBs were detected in MN patients than in MGA patients, and the level of glomerular DNA methylation was lower in MN patients than in MGA or DN patients. These results indicate that investigating podocyte DNA DSBs and DNA methylation changes may be useful for understanding the pathogenesis of CKD with proteinuria in humans. This study suggested the association of podocyte DNA damage and subsequent DNA methylation with proteinuria in minor glomerular abnormalities (MGA) patients and those with eGFR declines in diabetic nephropathy (DN) patients, respectively.


Asunto(s)
Nefropatías Diabéticas , Podocitos , Insuficiencia Renal Crónica , Humanos , Podocitos/metabolismo , Nefropatías Diabéticas/genética , Metilación de ADN , Proteinuria/genética , Daño del ADN , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/complicaciones , ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...