Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Ann N Y Acad Sci ; 1534(1): 24-44, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38426943

RESUMEN

This review consolidates current knowledge on mammalian parental care, focusing on its neural mechanisms, evolutionary origins, and derivatives. Neurobiological studies have identified specific neurons in the medial preoptic area as crucial for parental care. Unexpectedly, these neurons are characterized by the expression of molecules signaling satiety, such as calcitonin receptor and BRS3, and overlap with neurons involved in the reproductive behaviors of males but not females. A synthesis of comparative ecology and paleontology suggests an evolutionary scenario for mammalian parental care, possibly stemming from male-biased guarding of offspring in basal vertebrates. The terrestrial transition of tetrapods led to prolonged egg retention in females and the emergence of amniotes, skewing care toward females. The nocturnal adaptation of Mesozoic mammalian ancestors reinforced maternal care for lactation and thermal regulation via endothermy, potentially introducing metabolic gate control in parenting neurons. The established maternal care may have served as the precursor for paternal and cooperative care in mammals and also fostered the development of group living, which may have further contributed to the emergence of empathy and altruism. These evolution-informed working hypotheses require empirical validation, yet they offer promising avenues to investigate the neural underpinnings of mammalian social behaviors.


Asunto(s)
Encéfalo , Responsabilidad Parental , Humanos , Animales , Femenino , Masculino , Encéfalo/fisiología , Mamíferos/fisiología , Conducta Social , Neuronas/fisiología , Conducta Materna/fisiología
2.
Commun Biol ; 6(1): 1231, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052969

RESUMEN

Calcitonin receptor (Calcr) and its brain ligand amylin in the medial preoptic area (MPOA) are found to be critically involved in infant care and social contact behaviors in mice. In primates, however, the evidence is limited to an excitotoxic lesion study of the Calcr-expressing MPOA subregion (cMPOA) in a family-living primate species, the common marmoset. The present study utilized pharmacological manipulations of the cMPOA and shows that reversible inactivation of the cMPOA abolishes infant-care behaviors in sibling marmosets without affecting other social or non-social behaviors. Amylin-expressing neurons in the marmoset MPOA are distributed in the vicinity of oxytocin neurons in the anterior paraventricular nucleus of the hypothalamus. While amylin infusion facilitates infant carrying selectively, an oxytocin's inverse agonist, atosiban, reduces physical contact with non-infant family members without grossly affecting infant care. These data suggest that the amylin and oxytocin signaling mediate intrafamilial social interactions in a complementary manner in marmosets.


Asunto(s)
Oxitocina , Área Preóptica , Humanos , Ratones , Animales , Oxitocina/farmacología , Callithrix , Polipéptido Amiloide de los Islotes Pancreáticos , Agonismo Inverso de Drogas , Conducta Social
3.
J Neuroendocrinol ; 35(7): e13247, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36973234

RESUMEN

Oxytocin, a neuropeptide hormone, is indispensable for milk ejection during nursing and is important for uterine contractions during parturition. The exact functions of oxytocin in postpartum maternal behaviors and motivations require further investigation. To this end, we characterized the role of oxytocin in components of maternal motivations during the mid-postpartum period, which has not been previously studied. To maintain suckling stimuli, postpartum oxytocin knockout (Oxt-/- ) and heterozygous (Oxt+/- ) littermates were co-housed with a wild-type lactating mother and its litter, and were examined for their ability to retrieve pups under standard or high-risk conditions, nursing behavior, maternal aggression towards an unfamiliar intruder, and motivation to regain contact with separated pups. One-third of Oxt-/- mothers exhibited prolonged parturition but were otherwise grossly healthy. Despite their inability to eject milk, Oxt-/- mothers displayed nursing behaviors for similar durations to Oxt+/- mothers during the second postpartum week. In addition, Oxt-/- mothers were essentially intact for pup retrieval under standard conditions and were motivated to stay close to pups, although they showed a mild decrease in maternal care under high-risk conditions and increased anxiety-like behaviors in pup-related contexts. The present findings indicate that oxytocin is dispensable for nursing behavior and maternal motivations, yet suggest that oxytocin may be relevant for stress resilience in the postpartum period.


Asunto(s)
Lactancia , Oxitocina , Embarazo , Humanos , Femenino , Ratones , Animales , Oxitocina/fisiología , Periodo Posparto , Parto , Conducta Materna/fisiología
4.
Commun Biol ; 5(1): 1243, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411342

RESUMEN

Like humans, common marmoset monkeys utilize family cooperation for infant care, but the neural mechanisms underlying primate parental behaviors remain largely unknown. We investigated infant care behaviors of captive marmosets in family settings and caregiver-infant dyadic situations. Marmoset caregivers exhibited individual variations in parenting styles, comprised of sensitivity and tolerance toward infants, consistently across infants, social contexts and multiple births. Seeking the neural basis of these parenting styles, we demonstrated that the calcitonin receptor-expressing neurons in the marmoset medial preoptic area (MPOA) were transcriptionally activated during infant care, as in laboratory mice. Further, site-specific neurotoxic lesions of this MPOA subregion, termed the cMPOA, significantly reduced alloparental tolerance and total infant carrying, while sparing general health and other social or nonsocial behaviors. These results suggest that the molecularly-defined neural site cMPOA is responsible for mammalian parenting, thus provide an invaluable model to study the neural basis of parenting styles in primates.


Asunto(s)
Callithrix , Área Preóptica , Humanos , Ratones , Animales , Receptores de Calcitonina/genética , Neuronas , Mamíferos
5.
Nat Commun ; 13(1): 709, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136064

RESUMEN

Social animals actively engage in contact with conspecifics and experience stress upon isolation. However, the neural mechanisms coordinating the sensing and seeking of social contacts are unclear. Here we report that amylin-calcitonin receptor (Calcr) signaling in the medial preoptic area (MPOA) mediates affiliative social contacts among adult female mice. Isolation of females from free social interactions first induces active contact-seeking, then depressive-like behavior, concurrent with a loss of Amylin mRNA expression in the MPOA. Reunion with peers induces physical contacts, activates both amylin- and Calcr-expressing neurons, and leads to a recovery of Amylin mRNA expression. Chemogenetic activation of amylin neurons increases and molecular knockdown of either amylin or Calcr attenuates contact-seeking behavior, respectively. Our data provide evidence in support of a previously postulated origin of social affiliation in mammals.


Asunto(s)
Conducta Animal/fisiología , Área Preóptica/fisiología , Receptores de Calcitonina/metabolismo , Receptores de Polipéptido Amiloide de Islotes Pancreáticos/metabolismo , Conducta Social , Animales , Femenino , Técnicas de Inactivación de Genes , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Ratones , ARN Mensajero/metabolismo , Transducción de Señal/fisiología
6.
eNeuro ; 9(1)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35017259

RESUMEN

Oxytocin (Oxt) controls reproductive physiology and various kinds of social behaviors, but the exact contribution of Oxt to different components of parental care still needs to be determined. Here, we illustrate the neuroanatomical relations of the parental nurturing-induced neuronal activation with magnocellular Oxt neurons and fibers in the medial preoptic area (MPOA), the brain region critical for parental and alloparental behaviors. We used genetically-targeted mouse lines for Oxt, Oxt receptor (Oxtr), vasopressin receptor 1a (Avpr1a), vasopressin receptor 1b (Avpr1b), and thyrotropin-releasing hormone (Trh) to systematically examine the role of Oxt-related signaling in pup-directed behaviors. The Oxtr-Avpr1a-Avpr1b triple knock-out (TKO), and Oxt-Trh-Avpr1a-Avpr1b quadruple KO (QKO) mice were grossly healthy and fertile, except for their complete deficiency in milk ejection and modest deficiency in parturition secondary to maternal loss of the Oxt or Oxtr gene. In our minimal stress conditions, pup-directed behaviors in TKO and QKO mothers and fathers, virgin females and males were essentially indistinguishable from those of their littermates with other genotypes. However, Oxtr KO virgin females did show decreased pup retrieval in the pup-exposure assay performed right after restraint stress. This stress vulnerability in the Oxtr KO was abolished by the additional Avpr1b KO. The general stress sensitivity, as measured by plasma cortisol elevation after restraint stress or by the behavioral performance in the open field (OF) and elevated plus maze (EPM), were not altered in the Oxtr KO but were reduced in the Avpr1b KO females, indicating that the balance of neurohypophysial hormones affects the outcome of pup-directed behaviors.


Asunto(s)
Oxitocina , Receptores de Oxitocina , Animales , Femenino , Masculino , Ratones , Neuronas , Parto , Embarazo , Receptores de Oxitocina/genética , Conducta Social
7.
Cell Rep ; 35(9): 109204, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34077719

RESUMEN

Maternal mammals exhibit heightened motivation to care for offspring, but the underlying neuromolecular mechanisms have yet to be clarified. Here, we report that the calcitonin receptor (Calcr) and its ligand amylin are expressed in distinct neuronal populations in the medial preoptic area (MPOA) and are upregulated in mothers. Calcr+ MPOA neurons activated by parental care project to somatomotor and monoaminergic brainstem nuclei. Retrograde monosynaptic tracing reveals that significant modification of afferents to Calcr+ neurons occurs in mothers. Knockdown of either Calcr or amylin gene expression hampers risk-taking maternal care, and specific silencing of Calcr+ MPOA neurons inhibits nurturing behaviors, while pharmacogenetic activation prevents infanticide in virgin males. These data indicate that Calcr+ MPOA neurons are required for both maternal and allomaternal nurturing behaviors and that upregulation of amylin-Calcr signaling in the MPOA at least partially mediates risk-taking maternal care, possibly via modified connectomics of Calcr+ neurons postpartum.


Asunto(s)
Conducta Animal/fisiología , Conducta Materna/fisiología , Área Preóptica/metabolismo , Receptores de Calcitonina/metabolismo , Asunción de Riesgos , Transducción de Señal , Animales , Estrógenos/metabolismo , Femenino , Silenciador del Gen , Marcación de Gen , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Lactancia , Ligandos , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Periodo Posparto , Prolactina/metabolismo , Sinapsis/metabolismo , Regulación hacia Arriba
8.
Curr Top Behav Neurosci ; 35: 119-153, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28812267

RESUMEN

The oxytocin/vasopressin ancestor molecule has been regulating reproductive and social behaviors for more than 500 million years. In all mammals, oxytocin is the hormone indispensable for milk-ejection during nursing (maternal milk provision to offspring), a process that is crucial for successful mammalian parental care. In laboratory mice, a remarkable transcriptional activation occurs during parental behavior within the anterior commissural nucleus (AC), the largest magnocellular oxytocin cell population within the medial preoptic area (although the transcriptional activation was limited to non-oxytocinergic neurons in the AC). Furthermore, there are numerous recent reports on oxytocin's involvement in positive social behaviors in animals and humans. Given all those, the essential involvement of oxytocin in maternal/parental behaviors may seem obvious, but basic researchers are still struggling to pin down the exact role oxytocin plays in the regulation of parental behaviors. A major aim of this review is to more clearly define this role. The best conclusion at this moment is that OT can facilitate the onset of parental behavior, or parental behavior under stressful conditions.In this chapter, we will first review the basics of rodent parental behavior. Next, the neuroanatomy of oxytocin systems with respect to parental behavior in laboratory mice will be introduced. Then, the research history on the functional relationship between oxytocin and parental behavior, along with advancements in various techniques, will be reviewed. Finally, some technical considerations in conducting behavioral experiments on parental behavior in rodents will be addressed, with the aim of shedding light on certain pitfalls that should be avoided, so that the progress of research in this field will be facilitated. In this age of populism, researchers should strive to do even more scholarly works with further attention to methodological details.


Asunto(s)
Conducta Materna/fisiología , Neuronas/metabolismo , Oxitocina/metabolismo , Conducta Paterna/fisiología , Receptores de Oxitocina/metabolismo , Animales , Conducta Animal/fisiología , Femenino , Humanos , Masculino , Conducta Social
9.
Behav Brain Res ; 325(Pt B): 131-137, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27793732

RESUMEN

Sexually naïve male C57BL/6 mice aggressively bite unfamiliar pups. This behavior, called infanticide, is considered an adaptive reproductive strategy of males of polygamous species. We recently found that the rhomboid nucleus of the bed nucleus of the stria terminalis (BSTrh) is activated during infanticide and that the bilateral excitotoxic lesions of BSTrh suppress infanticidal behavior. Here we show that 3-week-old male C57BL/6 mice rarely engaged in infanticide and instead, provided parental care toward unfamiliar pups, consistent with observations in rats and other rodent species. This inhibition of infanticide at the periweaning period is functional because the next litter will be born at approximately the time of weaning of the previous litter through maternal postpartum ovulation. However, the mechanism of this age-dependent behavioral change is unknown. Therefore, we performed whole-cell patch clamp recordings of BSTrh and compared evoked neurotransmission in response to the stimulation of the stria terminalis of adult and 3-week-old male mice. Although we were unable to detect a significant difference in the amplitudes of inhibitory neurotransmission, the amplitudes and the paired-pulse ratio of evoked excitatory postsynaptic currents differed between adult and 3-week-old mice. These data suggest that maturation of the synaptic terminal in BSTrh that occurred later than 3 weeks after birth may mediate by the adaptive change from parental to infanticidal behavior in male mice.


Asunto(s)
Agresión/fisiología , Conducta Animal/fisiología , Potenciales Evocados/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Núcleos Septales/fisiología , Factores de Edad , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Núcleos Septales/crecimiento & desarrollo
10.
EMBO J ; 34(21): 2652-70, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26423604

RESUMEN

Paternal behavior is not innate but arises through social experience. After mating and becoming fathers, male mice change their behavior toward pups from infanticide to paternal care. However, the precise brain areas and circuit mechanisms connecting these social behaviors are largely unknown. Here we demonstrated that the c-Fos expression pattern in the four nuclei of the preoptic-bed nuclei of stria terminalis (BST) region could robustly discriminate five kinds of previous social behavior of male mice (parenting, infanticide, mating, inter-male aggression, solitary control). Specifically, neuronal activation in the central part of the medial preoptic area (cMPOA) and rhomboid nucleus of the BST (BSTrh) retroactively detected paternal and infanticidal motivation with more than 95% accuracy. Moreover, cMPOA lesions switched behavior in fathers from paternal to infanticidal, while BSTrh lesions inhibited infanticide in virgin males. The projections from cMPOA to BSTrh were largely GABAergic. Optogenetic or pharmacogenetic activation of cMPOA attenuated infanticide in virgin males. Taken together, this study identifies the preoptic-BST nuclei underlying social motivations in male mice and reveals unexpected complexity in the circuit connecting these nuclei.


Asunto(s)
Conducta Paterna , Área Preóptica/fisiología , Animales , Conducta Animal , Mapeo Encefálico , Neuronas GABAérgicas/metabolismo , Masculino , Ratones , Área Preóptica/citología , Proteínas Proto-Oncogénicas c-fos/metabolismo
11.
Gen Comp Endocrinol ; 177(2): 231-7, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22554923

RESUMEN

Brilliant plumage is typical of male birds, thus sexual plumage dichromatism is seen in many avian species; however, the molecular mechanism underlying this remains unclear. The agouti signaling protein (ASIP) is a paracrine factor that stimulates yellow/red pigment (pheomelanin) synthesis and inhibits black/brown pigment (eumelanin) synthesis in follicular melanocytes. In mammals, the distal promoter of the ASIP gene acts exclusively on the ventral side of the body to create a countershading pigmentation pattern by stimulating pheomelanin synthesis in the ventrum. Here, we examined the role of the distal ASIP promoter in controlling estrogen-dependent sexual dichromatism in chickens. Reverse-transcription polymerase chain reaction analyses revealed that ASIP class 1 mRNAs transcribed by the distal promoter were expressed exclusively on the ventral side of chicks and adult females displaying countershading. In showy adult males, the ASIP class 1 mRNAs were expressed in gold-colored ornamental feathers grown on the back. In the presence of estrogen, males molted into female-like plumage and ASIP class 1 mRNAs expression was altered to female patterns. These results suggest that the distal ASIP promoter produces countershading in chicks and adult females, similar to the ventral-specific ASIP promoter in mammals. In addition, the class 1 promoter plays an important role for creating sexual plumage dichromatism controlled by estrogen. This is the first evidence for a pigmentation gene having been modified in its expression during evolution to develop phenotypic diversity between individuals of different sexes.


Asunto(s)
Proteína de Señalización Agouti/genética , Pollos , Pigmentación/genética , Regiones Promotoras Genéticas/genética , Diferenciación Sexual/genética , Proteína de Señalización Agouti/metabolismo , Proteína de Señalización Agouti/fisiología , Animales , Pollos/genética , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Pollos/fisiología , Secuencia Conservada/genética , Estrógenos/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Masculino , Modelos Biológicos , Fenotipo , Pigmentación/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Diferenciación Sexual/efectos de los fármacos , Maduración Sexual/efectos de los fármacos , Maduración Sexual/genética , Maduración Sexual/fisiología
12.
Gen Comp Endocrinol ; 175(3): 495-9, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22202606

RESUMEN

Hair and feather pigmentation is mainly determined by the distribution of two kinds of melanin, eumelanin and pheomelanin, which produce brown to black and yellow to red colorations, respectively. The agouti signaling protein (ASIP) acts as an antagonist or an inverse agonist of the melanocortin 1 receptor (MC1R), a G protein-coupled receptor for α-melanocyte-stimulating hormone (α-MSH). This antagonism of the MC1R by ASIP on melanocytes initiates a switch of melanin synthesis from eumelanogenesis to pheomelanogenesis in mammals. In the present study, we isolated multiple ASIP mRNA variants generated by alternative splicing and promoters in chicken feather follicles. The mRNA variants showed a discrete tissue distribution. However, mRNAs were expressed predominantly in the feather pulp of follicles. Paralleling mRNA distribution, ASIP immunoreactivity was observed in feather pulp. Interestingly, ASIP was stained with pheomelanin but not eumelanin in pulp areas that face developing barbs. We suggest that the elaborate color pattern of individual feathers is formed in part by the antagonistic action of ASIP that is produced by multiple mRNA variants in chicken feather follicles.


Asunto(s)
Proteína de Señalización Agouti/fisiología , Pollos/fisiología , Plumas/fisiología , Pigmentación/fisiología , Proteína de Señalización Agouti/genética , Animales , Melaninas/fisiología , Comunicación Paracrina/fisiología , ARN Mensajero/fisiología
13.
Zoolog Sci ; 28(11): 790-801, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22035301

RESUMEN

In our laboratory, a single autosomal recessive mutation in a phenotype similar to ruby-eye (ru/Hps6(ru)) or ruby-eye 2 (ru2/Hps5(ru2)) spontaneously occurred in siblings of C57BL/10JHir (+/+, black) mice in 2006. RT-PCR analysis revealed that this novel mutation, named ru2(d)/Hps5(ru2-d), exhibited frameshift by 997G deletion in the Hps5 gene. To clarify the mechanism of the hypopigmentation, the characteristics of proliferation and differentiation of ru2(d)/ru2(d) epidermal melanoblasts and melanocytes cultured in a serum-free medium were investigated. The proliferation of ru2(d)/ru2(d) melanoblasts and melanocytes did not differ from that of +/+ melanoblasts and melanocytes. However, the differentiation of ru2(d)/ru2(d) melanocytes was greatly inhibited. Tyrosinase (TYR) activity, expression of TYR, TYR-related protein 1 (TRP1) and TRP2 (dopachrome tautomerase, DCT), eumelanin synthesis, and the number of stage IV melanosomes markedly decreased in ru2(d)/ru2(d) melanocytes. However, excess L-tyrosine (Tyr) added to culture media from initiation of the primary culture rescued the reduced differentiation through increase in TYR activity, expression of TYR, TRP1, TRP2 and Kit, eumelanin synthesis, and stage IV melanosomes. L-Tyr injected into ru2(d)/ru2(d) mice also stimulated melanocyte differentiation. These results suggest that the ru2(d) allele inhibits melanocyte differentiation, and that its impaired differentiation is rescued by excess Tyr.


Asunto(s)
Eliminación de Gen , Melanocitos/citología , Melanocitos/metabolismo , Proteínas/metabolismo , Tirosina/farmacología , Animales , Diferenciación Celular , Células Cultivadas , Medios de Cultivo , Dihidroxifenilalanina/metabolismo , Regulación de la Expresión Génica/fisiología , Inmunohistoquímica , Melaninas/metabolismo , Ratones , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , Proteínas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Gen Comp Endocrinol ; 171(1): 46-51, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21187100

RESUMEN

Feather coloration in chickens mainly depends on melanin produced by melanocytes located in the feather follicles. The melanocortin 1 receptor (MC1R) on follicular melanocytes regulates melanin synthesis; however, the source of the melanocortins that interact with the receptors remains unclear. In this study, we examine the potential expression of melanocortins and characterize the mRNAs for the precursor pro-opiomelanocortin (POMC) in chicken feather follicles. Reverse transcription-polymerase chain reaction (RT-PCR) revealed the expression of mRNAs for POMC, prohormone convertase 1 (PC1) and PC2, and western blotting detected adrenocorticotropic hormone (ACTH)-related products of POMC processing in feather follicles, suggesting that melanocortins are produced locally in the tissues of chickens. A combination of 5'RACE (rapid amplification of cDNA 5' end), 3'RACE and RT-PCR analyzes identified two classes of POMC mRNA, class a and class b, which encode the same full-length POMC protein but have different non-coding leader exons. Class a mRNAs were expressed specifically in feather follicles, whereas class b mRNAs were expressed in the pituitary, hypothalamus, and various peripheral tissues that we examined. Within the feather follicles, the class a mRNAs were distributed in epidermal layers from middle to distal locations, whereas the class b mRNAs were mainly expressed in pulp at proximal locations. Our findings suggest that feather pigmentation is regulated by locally produced melanocortins, and indicate that the melanocortins encoded by the different classes of POMC mRNAs may play different intra-follicular roles in chickens. This is the first report that demonstrates alternative promoter usage generating different full-length POMC mRNAs in vertebrates.


Asunto(s)
Epidermis/metabolismo , Plumas/metabolismo , Proopiomelanocortina/metabolismo , Regiones Promotoras Genéticas/genética , Animales , Pollos , Immunoblotting , Inmunohistoquímica , Proopiomelanocortina/genética , ARN Mensajero , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA