Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38794563

RESUMEN

In this study, electrospun scaffolds were fabricated using polycaprolactone (PCL) loaded with varying concentrations of ß-carotene (1.2%, 2.4%, and 3.6%) via the electrospinning technique. The electrospinning process involved the melting of PCL in acetic acid, followed by the incorporation of ß-carotene powder under constant stirring. Raman spectroscopy revealed a homogeneous distribution of ß-carotene within the PCL matrix. However, the ß-carotene appeared in particulate form, rather than being dissolved and blended with the PCL matrix, a result also confirmed by thermogravimetric analysis. Additionally, X-ray diffraction analysis indicated a decrease in crystallinity with increasing ß-carotene concentration. Mechanical testing of the scaffolds demonstrated an increase in ultimate strain, accompanied by a reduction in ultimate stress, indicating a potential plasticizing effect. Moreover, antimicrobial assays revealed a marginal antibacterial effect against Escherichia coli for scaffolds with higher ß-carotene concentrations. Conversely, preliminary biological assessment using KUSA-A1 mesenchymal cells indicated enhanced cellular proliferation in response to the scaffolds, suggesting the potential biocompatibility and cell-stimulating properties of ß-carotene-loaded PCL scaffolds. Overall, this study provides insights into the fabrication and characterization of electrospun PCL scaffolds containing ß-carotene, laying the groundwork for further exploration in tissue engineering and regenerative medicine applications.

2.
Biomed Mater ; 17(4)2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35504268

RESUMEN

Poly-caprolactone is one of the most promising biocompatible polymers on the market, in particular for temporary devices that are not subjected to high physiological loads. Even if completely resorbable in various biological environments, poly-caprolactione does not play any specific biological role in supporting tissue regeneration and for this reason has a limited range of possible applications. In this preliminary work, for the first time l-dopa and fibroin have been combined with electrospun poly-caprolactone fibers in order to induce bioactive effects and, in particular, stimulate the proliferation, adhesion and osteoconduction of the polymeric fibers. Results showed that addition of low-molecular weight fibroin reduces the mechanical strength of the fibers while promoting the formation of mineralized deposits, when testedin vitrowith KUSA-A1 mesenchymal cells. l-dopa, on the other hand, improved the mechanical properties and stimulated the formation of agglomerates of mineralized deposits containing calcium and phosphorous with high specific volume. The combination of the two substances resulted in good mechanical properties and higher amounts of mineralized deposits formedin vitro.


Asunto(s)
Fibroínas , Nanofibras , Regeneración Ósea , Levodopa , Poliésteres/farmacología , Polímeros , Ingeniería de Tejidos/métodos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...