Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biofactors ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777369

RESUMEN

Drug-induced gingival enlargement (DIGE) is a side effect of ciclosporin, calcium channel blockers, and phenytoin. DIGE is a serious disease that leads to masticatory and esthetic disorders, severe caries, and periodontitis but currently has no standard treatment. We recently reported that nuclear receptor 4A1 (NR4A1) is a potential therapeutic target for DIGE. This study aimed to evaluate the therapeutic effects of n-butylidenephthalide (BP), which increases the expression of NR4A1, on DIGE. In this study, NR4A1 mRNA expression was analyzed in the patients with periodontal disease (PD) and DIGE. We evaluated the effect of BP on NR4A1 expression in gingival fibroblasts and in a DIGE mouse model. RNA sequencing (RNA-seq) was conducted to identify the mechanisms by which BP increases NR4A1 expression. The results showed that NR4A1 mRNA expression in the patients with DIGE was significantly lower than the patients with PD. BP suppressed the upregulation of COL1A1 expression, which was upregulated by TGF-ß. BP also ameliorated gingival overgrowth in DIGE mice and reduced Col1a1 and Pai1 expression. BP also decreased Il1ß mRNA expression in gingival tissue in DIGE. RNA-seq results showed an increase in the expression of several genes related to mitogen-activated protein kinase including DUSP genes in gingival fibroblasts stimulated by BP. Treatment with ERK and JNK inhibitors suppressed the BP-induced increase in NR4A1 expression. In addition, BP promoted the phosphorylation of ERK in gingival fibroblasts. In conclusion, BP increases NR4A1 expression in gingival fibroblasts through ERK and JNK signaling, demonstrating its potential as a preventive and therapeutic agent against DIGE.

2.
JBMR Plus ; 8(6): ziae050, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38699440

RESUMEN

Cherubism (OMIM 118400) is a rare craniofacial disorder in children characterized by destructive jawbone expansion due to the growth of inflammatory fibrous lesions. Our previous studies have shown that gain-of-function mutations in SH3 domain-binding protein 2 (SH3BP2) are responsible for cherubism and that a knock-in mouse model for cherubism recapitulates the features of cherubism, such as increased osteoclast formation and jawbone destruction. To date, SH3BP2 is the only gene identified to be responsible for cherubism. Since not all patients clinically diagnosed with cherubism had mutations in SH3BP2, we hypothesized that there may be novel cherubism genes and that these genes may play a role in jawbone homeostasis. Here, using whole exome sequencing, we identified homozygous loss-of-function variants in the opioid growth factor receptor like 1 (OGFRL1) gene in 2 independent autosomal recessive cherubism families from Syria and India. The newly identified pathogenic homozygous variants were not reported in any variant databases, suggesting that OGFRL1 is a novel gene responsible for cherubism. Single cell analysis of mouse jawbone tissue revealed that Ogfrl1 is highly expressed in myeloid lineage cells. We generated OGFRL1 knockout mice and mice carrying the Syrian frameshift mutation to understand the in vivo role of OGFRL1. However, neither mouse model recapitulated human cherubism or the phenotypes exhibited by SH3BP2 cherubism mice under physiological and periodontitis conditions. Unlike bone marrow-derived M-CSF-dependent macrophages (BMMs) carrying the SH3BP2 cherubism mutation, BMMs lacking OGFRL1 or carrying the Syrian mutation showed no difference in TNF-ɑ mRNA induction by LPS or TNF-ɑ compared to WT BMMs. Osteoclast formation induced by RANKL was also comparable. These results suggest that the loss-of-function effects of OGFRL1 in humans differ from those in mice and highlight the fact that mice are not always an ideal model for studying rare craniofacial bone disorders.

3.
Stem Cell Rev Rep ; 20(1): 347-361, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37917410

RESUMEN

Mesenchymal stem cells (MSCs) have gained significant attention in cell therapies due to their multipotency and immunomodulatory capacities. The transcriptional co-activators YAP/TAZ, central to the mechanotransduction system in MSCs, dominantly direct MSCs lineage commitment. However, their role in immunomodulation remains elusive. Accordingly, this present study aimed to investigate the role of mechanotransducer YAP/TAZ and their binding target transcriptional factor, TEAD, in the immunomodulatory capacities of human bone marrow-derived MSCs. Reducing YAP/TAZ activity by altering the matrix stiffness, disrupting the F-actin integrity with chemical inhibitors, or using siRNAs increased the expression of immunomodulatory genes, such as TSG-6 and IDO, upon TNF-α stimulation. Similarly, transfection of TEAD siRNA also increased the immunomodulatory capacities in MSCs. RNA-seq analysis and inhibition assays demonstrated that the immunomodulatory capacities caused by YAP/TAZ-TEAD axis disruption were due to the NF-κB signaling pathway activation. Then, we also evaluated the in vivo anti-inflammatory efficacy of MSCs in a dextran sulfate sodium (DSS)-induced mice colitis model. The administration of human MSCs transfected with TEAD siRNA, which exhibited enhanced immunomodulatory properties in vitro, significantly ameliorated inflammatory bowel disease symptoms, such as body weight loss and acute colon inflammation, in the DSS-induced mice colitis model. Our findings underscore the mechanosignaling YAP/TAZ-TEAD axis as a regulator of MSCs immunomodulation. Targeting these signaling pathways could herald promising MSCs-based therapies for immune disorders.


Asunto(s)
Colitis , Células Madre Mesenquimatosas , Proteínas Señalizadoras YAP , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Colitis/metabolismo , Inmunomodulación , Mecanotransducción Celular , ARN Interferente Pequeño/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Factores de Transcripción de Dominio TEA/metabolismo
4.
J Bone Miner Res ; 38(10): 1521-1540, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37551879

RESUMEN

Mouse ligature-induced periodontitis (LIP) has been used to study bone loss in periodontitis. However, the role of osteocytes in LIP remains unclear. Furthermore, there is no consensus on the choice of alveolar bone parameters and time points to evaluate LIP. Here, we investigated the dynamics of changes in osteoclastogenesis and bone volume (BV) loss in LIP over 14 days. Time-course analysis revealed that osteoclast induction peaked on days 3 and 5, followed by the peak of BV loss on day 7. Notably, BV was restored by day 14. The bone formation phase after the bone resorption phase was suggested to be responsible for the recovery of bone loss. Electron microscopy identified bacteria in the osteocyte lacunar space beyond the periodontal ligament (PDL) tissue. We investigated how osteocytes affect bone resorption of LIP and found that mice lacking receptor activator of NF-κB ligand (RANKL), predominantly in osteocytes, protected against bone loss in LIP, whereas recombination activating 1 (RAG1)-deficient mice failed to resist it. These results indicate that T/B cells are dispensable for osteoclast induction in LIP and that RANKL from osteocytes and mature osteoblasts regulates bone resorption by LIP. Remarkably, mice lacking the myeloid differentiation primary response gene 88 (MYD88) did not show protection against LIP-induced bone loss. Instead, osteocytic cells expressed nucleotide-binding oligomerization domain containing 1 (NOD1), and primary osteocytes induced significantly higher Rankl than primary osteoblasts when stimulated with a NOD1 agonist. Taken together, LIP induced both bone resorption and bone formation in a stage-dependent manner, suggesting that the selection of time points is critical for quantifying bone loss in mouse LIP. Pathogenetically, the current study suggests that bacterial activation of osteocytes via NOD1 is involved in the mechanism of osteoclastogenesis in LIP. The NOD1-RANKL axis in osteocytes may be a therapeutic target for bone resorption in periodontitis. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).

5.
Stem Cell Rev Rep ; 19(6): 1812-1827, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37166558

RESUMEN

Three-dimensional clumps of mesenchymal stem cells (MSCs)/extracellular matrix (ECM) complexes (C-MSCs) can be implanted into tissue defects with no artificial scaffolds. In addition, the cellular properties and characteristics of the ECM in C-MSCs can be regulated in vitro. Most bone formation in the developmental and healing process is due to endochondral ossification, which occurs after bone collar formation surrounding cartilage derived from MSCs. Thus, to develop a rapid and reliable bone-regenerative cell therapy, the present study aimed to generate cartilaginous tissue covered with a mineralized bone collar-like structure from human C-MSCs by combining chondrogenic and osteogenic induction. Human bone marrow-derived MSCs were cultured in xeno-free/serum-free (XF) growth medium. Confluent cells that formed cellular sheets were detached from the culture plate using a micropipette tip. The floating cellular sheet contracted to round clumps of cells (C-MSCs). C-MSCs were maintained in XF-chondro-inductive medium (CIM) and XF-osteo-inductive medium (OIM). The biological and bone-regenerative properties of the generated cellular constructs were assessed in vitro and in vivo. C-MSCs cultured in CIM/OIM formed cartilaginous tissue covered with a mineralized matrix layer, whereas CIM treatment alone induced cartilage with no mineralization. Transplantation of the cartilaginous tissue covered with a mineralized matrix induced more rapid bone reconstruction via endochondral ossification in the severe combined immunodeficiency mouse calvarial defect model than that of cartilage generated using only CIM. These results highlight the potential of C-MSC culture in combination with CIM/OIM to generate cartilage covered with a bone collar-like structure, which can be applied for novel bone-regenerative cell therapy.


Asunto(s)
Regeneración Ósea , Osteogénesis , Ratones , Animales , Humanos , Huesos , Cartílago , Matriz Extracelular , Modelos Animales de Enfermedad
6.
Nat Commun ; 13(1): 6648, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333322

RESUMEN

The impact of bone cell activation on bacterially-induced osteolysis remains elusive. Here, we show that matrix-embedded osteocytes stimulated with bacterial pathogen-associated molecular patterns (PAMPs) directly drive bone resorption through an MYD88-regulated signaling pathway. Mice lacking MYD88, primarily in osteocytes, protect against osteolysis caused by calvarial injections of bacterial PAMPs and resist alveolar bone resorption induced by oral Porphyromonas gingivalis (Pg) infection. In contrast, mice with targeted MYD88 restoration in osteocytes exhibit osteolysis with inflammatory cell infiltration. In vitro, bacterial PAMPs induce significantly higher expression of the cytokine RANKL in osteocytes than osteoblasts. Mechanistically, activation of the osteocyte MYD88 pathway up-regulates RANKL by increasing binding of the transcription factors CREB and STAT3 to Rankl enhancers and by suppressing K48-ubiquitination of CREB/CREB binding protein and STAT3. Systemic administration of an MYD88 inhibitor prevents jawbone loss in Pg-driven periodontitis. These findings reveal that osteocytes directly regulate inflammatory osteolysis in bone infection, suggesting that MYD88 and downstream RANKL regulators in osteocytes are therapeutic targets for osteolysis in periodontitis and osteomyelitis.


Asunto(s)
Pérdida de Hueso Alveolar , Osteólisis , Osteomielitis , Periodontitis , Ratones , Animales , Osteocitos/metabolismo , Osteólisis/inducido químicamente , Osteólisis/complicaciones , Osteólisis/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Ligando RANK/metabolismo , Porphyromonas gingivalis/metabolismo , Periodontitis/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Osteoclastos/metabolismo
7.
JBMR Plus ; 4(6): e10352, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32537546

RESUMEN

Cherubism (OMIM#118400) is a craniofacial disorder characterized by destructive jaw expansion. Gain-of-function mutations in SH3-domain binding protein 2 (SH3BP2) are responsible for this rare disorder. We have previously shown that homozygous knock-in (KI) mice (Sh3bp2 KI/KI ) recapitulate human cherubism by developing inflammatory lesions in the jaw. However, it remains unknown why heterozygous KI mice (Sh3bp2 KI/+ ) do not recapitulate the excessive jawbone destruction in human cherubism, even though all mutations are heterozygous in humans. We hypothesized that Sh3bp2 KI/+ mice need to be challenged for developing exacerbated jawbone destruction and that bacterial stimulation in the oral cavity may be involved in the mechanism. In this study, we applied a ligature-induced periodontitis model to Sh3bp2 KI/+ mice to induce inflammatory alveolar bone destruction. Ligature placement induced alveolar bone resorption with gingival inflammation. Quantification of alveolar bone volume revealed that Sh3bp2 KI/+ mice developed more severe bone loss (male: 43.0% ± 10.6%, female: 42.6% ± 10.4%) compared with Sh3bp2 +/+ mice (male: 25.8% ± 4.0%, female: 30.9% ± 6.5%). Measurement of bone loss by the cement-enamel junction-alveolar bone crest distance showed no difference between Sh3bp2 KI/+ and Sh3bp2 +/+ mice. The number of osteoclasts on the alveolar bone surface was higher in male Sh3bp2 KI/+ mice, but not in females, compared with Sh3bp2 +/+ mice. In contrast, inflammatory cytokine levels in gingiva were comparable between Sh3bp2 KI/+ and Sh3bp2 +/+ mice with ligatures. Genetic deletion of the spleen tyrosine kinase in myeloid cells and antibiotic treatment suppressed alveolar bone loss in Sh3bp2 KI/+ mice, suggesting that increased osteoclast differentiation and function mediated by SYK and accumulation of oral bacteria are responsible for the increased alveolar bone loss in Sh3bp2 KI/+ mice with ligature-induced periodontitis. High amounts of oral bacterial load caused by insufficient oral hygiene could be a trigger for the initiation of jawbone destruction in human cherubism. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

8.
Bone Rep ; 12: 100258, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32258251

RESUMEN

Even though the receptor activator of the nuclear factor-κB ligand (RANKL) and its receptor RANK have an exclusive role in osteoclastogenesis, the possibility of RANKL/RANK-independent osteoclastogenesis has been the subject of a long-standing debate in bone biology. In contrast, it has been reported that calvarial injection of TNF-ɑ elicits significant osteoclastogenesis in the absence of RANKL/RANK in NF-κB2- and RBP-J-deficient mice, suggesting that inflammatory challenges and secondary gene manipulation are the prerequisites for RANKL/RANK-deficient mice to develop osteoclasts in vivo. Here we report that, even in the absence of RANKL (Rankl -/- ), cherubism mice (Sh3bp2 KI/KI ) harboring the homozygous gain-of-function mutation in SH3-domain binding protein 2 (SH3BP2) develop tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts spontaneously. The Sh3bp2 KI/KI Rankl -/- mice exhibit an increase in tooth exposure and a decrease in bone volume/total volume compared to Sh3bp2 +/+ Rankl -/- mice. The multinucleated cells were stained positively for cathepsin K. Osteoclastic marker gene expression in bone and serum TRAP5b levels were elevated in Sh3bp2 KI/KI Rankl -/- mice. Elevation of the serum TNF-ɑ levels suggested that TNF-ɑ is a driver for the RANKL-independent osteoclast formation in Sh3bp2 KI/KI mice. Our results provide a novel mutant model that develops osteoclasts independent of RANKL and establish that the gain-of-function of SH3BP2 promotes osteoclastogenesis not only in the presence of RANKL but also in the absence of RANKL.

9.
Biochem Biophys Res Commun ; 525(4): 889-894, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32171527

RESUMEN

A sophisticated and delicate balance between bone resorption by osteoclasts and bone formation by osteoblasts regulates bone metabolism. Optineurin (OPTN) is a gene involved in primary open-angle glaucoma and amyotrophic lateral sclerosis. Although its function has been widely studied in ophthalmology and neurology, recent reports have shown its possible involvement in bone metabolism through negative regulation of osteoclast differentiation. However, little is known about the role of OPTN in osteoblast function. Here, we demonstrated that OPTN controls not only osteoclast but also osteoblast differentiation. Different parameters involved in osteoblastogenesis and osteoclastogenesis were assessed in Optn-/- mice. The results showed that osteoblasts from Optn-/- mice had impaired alkaline phosphatase activity, defective mineralized nodules, and inability to support osteoclast differentiation. Moreover, OPTN could bind to signal transducer and activator of transcription 1 (STAT1) and regulate runt-related transcription factor 2 (RUNX2) nuclear localization by modulating STAT1 levels in osteoblasts. These data suggest that OPTN is involved in bone metabolism not only by regulating osteoclast function but also by regulating osteoblast function by mediating RUNX2 nuclear translocation via STAT1.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Osteoblastos/citología , Osteogénesis/fisiología , Factor de Transcripción STAT1/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Proteínas de Transporte de Membrana/genética , Ratones Endogámicos C57BL , Ratones Mutantes , Osteoclastos/citología , Osteoclastos/metabolismo
10.
J Bone Miner Res ; 35(2): 382-395, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31613396

RESUMEN

Periodontitis is a bacterially induced chronic inflammatory condition of the oral cavity where tooth-supporting tissues including alveolar bone are destructed. Previously, we have shown that the adaptor protein SH3-domain binding protein 2 (SH3BP2) plays a critical role in inflammatory response and osteoclastogenesis of myeloid lineage cells through spleen tyrosine kinase (SYK). In this study, we show that SH3BP2 is a novel regulator for alveolar bone resorption in periodontitis. Micro-CT analysis of SH3BP2-deficient (Sh3bp2 -/- ) mice challenged with ligature-induced periodontitis revealed that Sh3bp2 -/- mice develop decreased alveolar bone loss (male 14.9% ± 10.2%; female 19.0% ± 6.0%) compared with wild-type control mice (male 25.3% ± 5.8%; female 30.8% ± 5.8%). Lack of SH3BP2 did not change the inflammatory cytokine expression and osteoclast induction. Conditional knockout of SH3BP2 and SYK in myeloid lineage cells with LysM-Cre mice recapitulated the reduced bone loss without affecting both inflammatory cytokine expression and osteoclast induction, suggesting that the SH3BP2-SYK axis plays a key role in regulating alveolar bone loss by mechanisms that regulate the bone-resorbing function of osteoclasts rather than differentiation. Administration of a new SYK inhibitor GS-9973 before or after periodontitis induction reduced bone resorption without affecting inflammatory reaction in gingival tissues. In vitro, GS-9973 treatment of bone marrow-derived M-CSF-dependent macrophages suppressed tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation with decreased mineral resorption capacity even when GS-9973 was added after RANKL stimulation. Thus, the data suggest that SH3BP2-SYK is a novel signaling axis for regulating alveolar bone loss in periodontitis and that SYK can be a potential therapeutic target to suppress alveolar bone resorption in periodontal diseases. © 2019 American Society for Bone and Mineral Research. © 2019 American Society for Bone and Mineral Research.


Asunto(s)
Pérdida de Hueso Alveolar , Osteoclastos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Huesos/metabolismo , Diferenciación Celular , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Fosfatasa Ácida Tartratorresistente
11.
Prog Neurol Surg ; 32: 1-13, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29990969

RESUMEN

Recently, the clinical applications of photodynamic therapy (PDT) in the management of malignant brain tumors have attracted significant attention. Meta-analysis of the observational studies on this treatment in high-grade gliomas (Eljamel, 2010) included more than 1,000 patients and reported median survival in cases of newly diagnosed and recurrent glioblastoma multiforme (GBM) of 16.1 and 10.3 months, respectively. In some series, increase in the long-term survival rates was also observed. Few controlled trials demonstrated statistically significant impact of PDT on prolongation of survival in patients with GBM in comparison to conventional management. The main treatment-related adverse event is short-lasting excessive photosensitivity of the skin and retina after photosensitizer administration, but its negative consequences can be easily avoided with appropriate protective measures. Overall, PDT may be considered to be a safe and effective adjuvant therapeutic option for patients with newly diagnosed and recurrent malignant gliomas. Aggressive tumor resection seems to be an important prerequisite to maximize treatment efficacy.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioma/terapia , Recurrencia Local de Neoplasia/terapia , Evaluación de Resultado en la Atención de Salud , Fotoquimioterapia/métodos , Trastornos por Fotosensibilidad/etiología , Fármacos Fotosensibilizantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Fotoquimioterapia/efectos adversos , Fármacos Fotosensibilizantes/efectos adversos
12.
Jpn Dent Sci Rev ; 54(2): 66-75, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29755617

RESUMEN

Periodontal disease is a bacterial biofilm-associated inflammatory disease that has been implicated in many systemic diseases. A new preventive method for periodontal disease needs to be developed in order to promote the health of the elderly in a super-aged society. The gingival epithelium plays an important role as a mechanical barrier against bacterial invasion and a part of the innate immune response to infectious inflammation in periodontal tissue. The disorganization of cell-cell interactions and subsequent inflammation contribute to the initiation of periodontal disease. These make us consider that regulation of host defensive functions, epithelial barrier and neutrophil activity, may become novel preventive methods for periodontal inflammation. Based on this concept, we have found that several agents regulate the barrier function of gingival epithelial cells and suppress the accumulation of neutrophils in the gingival epithelium. We herein introduce the actions of irsogladine maleate, azithromycin, amphotericin B, and Houttuynia cordata (dokudami in Japanese), which is commonly used in traditional medicine, on the epithelial barrier and neutrophil migration in gingival epithelial cells in vivo and in vitro, in order to provide support for the clinical application of these agents to the prevention of periodontal inflammation.

13.
J Bone Miner Res ; 33(8): 1513-1519, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29669173

RESUMEN

Cherubism is a craniofacial disorder characterized by maxillary and mandibular bone destruction. Gain-of-function mutations in the SH3-domain binding protein 2 (SH3BP2) are responsible for the excessive bone resorption caused by fibrous inflammatory lesions. A homozygous knock-in (KI) mouse model for cherubism (Sh3bp2KI/KI ) develops autoinflammation resulting in systemic bone destruction. Although administration of the TNF-α blocker etanercept to neonatal Sh3bp2KI/KI mice prevented the disease onset, this therapy was not effective for adult Sh3bp2KI/KI mice or human cherubism patients who already had lesions. Because genetic ablation of spleen tyrosine kinase (SYK) in myeloid cells rescues Sh3bp2KI/KI mice from inflammation, we examined whether SYK inhibitor administration can improve fully developed cherubism symptoms in adult Sh3bp2KI/KI mice. Entospletinib (GS-9973) was intraperitoneally injected into 10-week-old Sh3bp2KI/KI mice every day for 6 weeks. Treatment with GS-9973 improved facial swelling and histomorphometric analysis of lung and liver tissue showed that GS-9973 administration significantly reduced inflammatory infiltrates associated with decreased levels of serum TNF-α. Micro-computed tomography (µCT) analysis showed that GS-9973 treatment reduced bone erosion in mandibles, calvariae, and ankle and elbow joints of Sh3bp2KI/KI mice compared to Sh3bp2KI/KI mice treated with dimethyl sulfoxide (DMSO). Taken together, the results demonstrate that administration of the SYK inhibitor ameliorates an already established cherubism phenotype in mice, suggesting that pharmacological inhibition of SYK may be a treatment option for cherubism patients with active disease progression. © 2018 American Society for Bone and Mineral Research.


Asunto(s)
Huesos/patología , Querubismo/tratamiento farmacológico , Indazoles/uso terapéutico , Inflamación/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazinas/uso terapéutico , Quinasa Syk/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Huesos/efectos de los fármacos , Querubismo/complicaciones , Modelos Animales de Enfermedad , Indazoles/administración & dosificación , Indazoles/farmacología , Inflamación/complicaciones , Inflamación/patología , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Pirazinas/administración & dosificación , Pirazinas/farmacología , Quinasa Syk/metabolismo
14.
J Bone Miner Res ; 33(1): 167-181, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28914985

RESUMEN

Currently, it is believed that osteoclasts positive for tartrate-resistant acid phosphatase (TRAP+) are the exclusive bone-resorbing cells responsible for focal bone destruction in inflammatory arthritis. Recently, a mouse model of cherubism (Sh3bp2KI/KI ) with a homozygous gain-of-function mutation in the SH3-domain binding protein 2 (SH3BP2) was shown to develop auto-inflammatory joint destruction. Here, we demonstrate that Sh3bp2KI/KI mice also deficient in the FBJ osteosarcoma oncogene (c-Fos) still exhibit noticeable bone erosion at the distal tibia even in the absence of osteoclasts at 12 weeks old. Levels of serum collagen I C-terminal telopeptide (ICTP), a marker of bone resorption generated by matrix metalloproteinases (MMPs), were elevated, whereas levels of serum cross-linked C-telopeptide (CTX), another resorption marker produced by cathepsin K, were not increased. Collagenolytic MMP levels were increased in the inflamed joints of the Sh3bp2KI/KI mice deficient in c-Fos. Resorption pits contained a large number of F4/80+ macrophages and genetic depletion of macrophages rescued these erosive changes. Importantly, administration of NSC405020, an MMP14 inhibitor targeted to the hemopexin (PEX) domain, suppressed bone erosion in c-Fos-deficient Sh3bp2KI/KI mice. After activation of the NF-κB pathway, macrophage colony-stimulating factor (M-CSF)-dependent macrophages from c-Fos-deficient Sh3bp2KI/KI mice expressed increased amounts of MMP14 compared with wild-type macrophages. Interestingly, receptor activator of NF-κB ligand (RANKL)-deficient Sh3bp2KI/KI mice failed to show notable bone erosion, whereas c-Fos deletion did restore bone erosion to the RANKL-deficient Sh3bp2KI/KI mice, suggesting that osteolytic transformation of macrophages requires both loss-of-function of c-Fos and gain-of-function of SH3BP2 in this model. These data provide the first genetic evidence that cells other than osteoclasts can cause focal bone destruction in inflammatory bone disease and suggest that MMP14 is a key mediator conferring pathological bone-resorbing capacity on c-Fos-deficient Sh3bp2KI/KI macrophages. In summary, the paradigm that osteoclasts are the exclusive cells executing inflammatory bone destruction may need to be reevaluated based on our findings with c-Fos-deficient cherubism mice lacking osteoclasts. © 2017 American Society for Bone and Mineral Research.


Asunto(s)
Huesos/patología , Querubismo/patología , Inflamación/patología , Macrófagos/patología , Metaloproteinasa 14 de la Matriz/metabolismo , Osteoclastos/metabolismo , Proteínas Proto-Oncogénicas c-fos/deficiencia , Fosfatasa Ácida Tartratorresistente/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Articulaciones/efectos de los fármacos , Articulaciones/patología , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , FN-kappa B/metabolismo , Osteoclastos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ligando RANK/deficiencia , Ligando RANK/metabolismo , Transducción de Señal/efectos de los fármacos
15.
Cell Physiol Biochem ; 39(5): 1777-1786, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27744428

RESUMEN

BACKGROUND: An investigation of the mechanisms underlying the production of inflammatory cytokines through the stimulation of microorganisms on gingival epithelial cells may provide insights into the pathogenesis of the initiation of periodontitis. Lipid rafts, microdomains in the cell membrane, include a large number of receptors, and are centrally involved in signal transduction. We herein examined the involvement of lipid rafts in the expression of interleukin (IL-6) and IL-8 in gingival epithelial cells stimulated by periodontal pathogens. METHODS: OBA9, a human gingival cell line, was stimulated by Aggregatibacter actinomycetemcomitans or tumor necrosis factor (TNF)-α in the presence of methyl-ß-cyclodextrin (MßCD). RESULTS: A. actinomycetemcomitans or TNF-α increased IL-8 and IL-6 mRNA levels, and promoted the phosphorylation of ERK and p38 MAP kinase in OBA9. The pretreatment with MßCD abolished increases in IL-6 and IL-8 mRNA levels and the phosphorylation induced by A. actinomycetemcomitans, but did not suppress the response induced by TNF-α. The transfection of TLR4 inhibited A. actinomycetemcomitans-induced increases in IL-8 and IL-6 mRNA levels. Confocal microscopy revealed that MßCD inhibited the mobilization of TLR4 into lipid rafts. CONCLUSION: The mobilization of TLR4 into lipid rafts is involved in the expression of inflammatory cytokines and phosphorylation of MAP kinase in human gingival epithelial cells stimulated by A. actinomycetemcomitans.


Asunto(s)
Aggregatibacter actinomycetemcomitans/crecimiento & desarrollo , Células Epiteliales/inmunología , Interacciones Huésped-Patógeno , Microdominios de Membrana/inmunología , Receptor Toll-Like 4/genética , Proteínas Quinasas p38 Activadas por Mitógenos/inmunología , Aggregatibacter actinomycetemcomitans/metabolismo , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Células Epiteliales/ultraestructura , Regulación de la Expresión Génica , Encía/inmunología , Encía/microbiología , Encía/patología , Humanos , Interleucina-6/genética , Interleucina-6/inmunología , Interleucina-8/genética , Interleucina-8/inmunología , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/microbiología , Microdominios de Membrana/patología , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/inmunología , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/inmunología , Fosforilación , Transporte de Proteínas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/inmunología , Factor de Necrosis Tumoral alfa/farmacología , beta-Ciclodextrinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/genética
16.
Cell Microbiol ; 18(12): 1723-1738, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27121139

RESUMEN

Gingival junctional epithelial cell apoptosis caused by periodontopathic bacteria exacerbates periodontitis. This pathological apoptosis is involved in the activation of transforming growth factor ß (TGF-ß). However, the molecular mechanisms by which microbes induce the activation of TGF-ß remain unclear. We previously reported that Aggregatibacter actinomycetemcomitans (Aa) activated TGF-ß receptor (TGF-ßR)/smad2 signalling to induce epithelial cell apoptosis, even though Aa cannot bind to TGF-ßR. Additionally, outer membrane protein 29 kDa (Omp29), a member of the Aa Omps family, can induce actin rearrangements via focal adhesion kinase (FAK) signalling, which also plays a role in the activation of TGF-ß by cooperating with integrin. Accordingly, we hypothesized that Omp29-induced actin rearrangements via FAK activity would enhance the activation of TGF-ß, leading to gingival epithelial cell apoptosis in vitro. By using human gingival epithelial cell line OBA9, we found that Omp29 activated TGF-ßR/smad2 signalling and decreased active TGF-ß protein levels in the extracellular matrix (ECM) of cell culture, suggesting the transactivation of TGF-ßR. Inhibition of actin rearrangements by cytochalasin D or blebbistatin and knockdown of FAK or integrinß1 expression by siRNA transfection attenuated TGF-ßR/smad2 signalling activity and reduction of TGF-ß levels in the ECM caused by Omp29. Furthermore, Omp29 bound to fibronectin (Fn) to induce its aggregation on integrinß1, which is associated with TGF-ß signalling activity. All the chemical inhibitors and siRNAs tested blocked Omp29-induced OBA9 cells apoptosis. These results suggest that Omp29 binds to Fn in order to facilitate Fn/integrinß1/FAK signalling-dependent TGF-ß release from the ECM, thereby inducing gingival epithelial cell apoptosis via TGF-ßR/smad2 pathway.


Asunto(s)
Aggregatibacter actinomycetemcomitans/genética , Proteínas de la Membrana Bacteriana Externa/genética , Células Epiteliales/microbiología , Fibronectinas/genética , Quinasa 1 de Adhesión Focal/genética , Integrina beta1/genética , Factor de Crecimiento Transformador beta/genética , Aggregatibacter actinomycetemcomitans/metabolismo , Apoptosis/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/farmacología , Línea Celular Transformada , Citocalasina D/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Fibronectinas/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Regulación de la Expresión Génica , Encía/metabolismo , Encía/microbiología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Interacciones Huésped-Patógeno , Humanos , Integrina beta1/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Transducción de Señal , Proteína Smad2/antagonistas & inhibidores , Proteína Smad2/genética , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo
17.
Arch Oral Biol ; 62: 64-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26655749

RESUMEN

OBJECTIVE: The gingival epithelium plays an important role in protecting against the invasion of periodontal pathogens, and the permeability of gingival epithelial cells has been implicated in the initiation of periodontitis. Azithromycin (AZM) has been used in the treatment of chronic inflammatory airway diseases because it regulates cell-cell contact in airway epithelial cells. Therefore, AZM may also regulate barrier function in gingival epithelial cells. In the present study, we examined the effects of AZM on the permeability of human gingival epithelial cells (HGEC) under inflammatory conditions in vitro. MATERIALS AND METHODS: HGEC were stimulated by tumor necrosis factor-α (TNF-α) in the presence of AZM or p38 MAP kinase and ERK inhibitors. Permeability was assessed based on transepithelial electrical resistance (TER). The expression of E-cadherin, phosphorylated p38 MAP kinase, and ERK was analyzed by Western blotting. RESULTS: TNF-α decreased TER in HGEC, and AZM and the p38 MAP kinase and ERK inhibitors recovered this decrease. AZM inhibited the phosphorylation of ERK and p38 MAP kinase in TNF-α-stimulated HGEC. Furthermore, AZM recovered the decrease in E-cadherin expression in HGEC stimulated with TNF-α. CONCLUSIONS: These results suggested that AZM regulated gingival epithelial permeability through p38 MAP kinase and ERK signaling, and may contribute to suppress the inflammation in gingival tissue.


Asunto(s)
Azitromicina/farmacología , Células Epiteliales/efectos de los fármacos , Encía/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Cadherinas/metabolismo , Línea Celular , Permeabilidad de la Membrana Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Encía/citología , Encía/metabolismo , Gingivitis/metabolismo , Humanos , Interleucina-8/biosíntesis , Interleucina-8/metabolismo , Fosforilación , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
Cytokine ; 75(1): 165-73, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25882870

RESUMEN

Periodontitis is the most prevalent infectious disease caused by periodontopathic bacteria and is also a chronic inflammatory disease. Gingival crevicular fluid (GCF) is an inflammatory exudate that seeps into the gingival crevices or periodontal pockets around teeth with inflamed gingiva, and contains various materials including leukocytes and cytokines. Since gingival epithelial cells, which form a barrier against bacterial challenges, are affected by GCF, cytokines or other materials contained within GCF are engaged in the maintenance and disruption of the epithelial barrier. Accordingly, its compositional pattern has been employed as a reliable objective index of local inflammation. Transforming growth factor ß1 (TGF-ß1) levels in GCF were previously shown to be markedly higher in patients with periodontitis than in healthy subject. However, it currently remains unclear how TGF-ß1 affects gingival epithelial cell growth or apoptosis; therefore, elucidating the mechanism responsible may lead to a deeper understanding of pathogenic periodontitis. In the present study, the human gingival epithelial cell line, OBA9 cells were stimulated with recombinant TGF-ß1. Apoptosis-related protein levels were determined by Western blotting. Caspase-3/7 activity was measured with a Caspase-Glo assay kit. Surviving and apoptotic cells were detected using an MTS assay and TUNEL staining, respectively. TGF-ßRI siRNA and smad2 siRNA were transfected into cells using the lipofectamine RNAiMAX reagent. TGF-ß1 elevated caspase-3 activity and the number of TUNEL-positive apoptotic cells in OBA9 cells. Furthermore, while the levels of the pro-apoptotic proteins Bax, Bak, Bim, and Bad were increased in OBA9 cells stimulated with TGF-ß1, the TGF-ß1 treatment also decreased the levels of anti-apoptotic proteins such as Bcl-2 and Bcl-xL in a time-dependent manner. Additionally, TGF-ß1 up-regulated the protein levels of cleaved caspase-9. These results indicated that TGF-ß1-induced apoptosis was involved in a mitochondria-related intrinsic pathway. TGF-ß1 phosphorylated smad2 in OBA9 cells and this phosphorylation was clearly reduced by SB431542 (a TGF-ß type I receptor inhibitor). Consistent with this result, SB431542 or smad2 siRNA-induced reductions in smad2 protein expression levels attenuated TGF-ß1-induced apoptosis. On the other hand, the ligation of TGF-ß1 on its receptor also stimulated the phosphorylation of Erk and Akt, which are smad2-independent pathways. However, the inhibition of Erk/Akt signaling pathways by U0126, a MEK-Erk inhibitor and LY294002, a PI3Kinase-Akt inhibitor, augmented TGF-ß1-induced apoptosis in OBA9 cells. Taken together, the results of present study demonstrated that TGF-ß1 activated both the smad2 and Erk/Akt cascades via its receptor on gingival epithelial cells, even though these two pathways have opposite roles in cell death and survival, and the culmination of these signaling events induced mitochondria-dependent apoptosis in gingival epithelial cells. Based on the results of the present study, we herein proposed for the first time, that TGF-ß1 is a novel target cytokine for monitoring the progression of periodontal disease.


Asunto(s)
Células Epiteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Encía/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Acetilcisteína/metabolismo , Apoptosis , Benzamidas/química , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Dioxoles/química , Humanos , Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas , Periodontitis/metabolismo , Fosforilación , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
19.
Int Immunopharmacol ; 15(2): 340-7, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23306101

RESUMEN

Periodontitis is an infectious inflammatory disease. Our previous studies have revealed that irsogladine maleate (IM) regulates intercellular junctional function and chemokine secretion in gingival epithelium, resulting in the suppression of the onset of periodontal disease in a rat model. Therefore, it is plausible that IM is a promising preventive remedy for periodontal disease. In this study, to gain a better understanding of IM in gingival epithelial cells, we employed a DNA microarray analysis. More specifically, human gingival epithelial cells (HGEC) were exposed to Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) in the presence or absence of IM. Then, a human genome focus array was used. A. actinomycetemcomitans facilitated the expression of several inflammatory-related genes, including these for matrix metalloproteinase (MMP)-3, interleukin (IL)-6, and intercellular adhesion molecule-1 (ICAM-1) in HGEC, while these mRNA levels were attenuated by IM treatment. Importantly, consistent with mRNA levels, immunoblotting, immunofluorescence staining and ELISA analysis indicated that IM also abrogated the A. actinomycetemcomitans-induced increase in MMP-3, IL-6, and ICAM-1 at the protein level. In addition, inhibition of the ERK or p38 MAP kinase signaling cascade, previously reported to be disturbed by IM treatment in HGEC, clearly blocked A. actinomycetemcomitans-induced MMP-3, IL-6, or ICAM-1 protein expression. Moreover, animal study revealed that IM-pretreatment inhibited the A. actinomycetemcomitans-induced increase of ICAM-1 in gingival junctional epithelium. Taken together, these results suggested that IM can regulate inflammatory responses in HGEC by inhibiting the ERK or p38 MAP kinase signaling cascade, which may result in suppression of inflammation in gingival tissue, thereby contributing to the prevention of periodontitis.


Asunto(s)
Infecciones por Actinobacillus/inmunología , Aggregatibacter actinomycetemcomitans/inmunología , Células Epiteliales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Encía/patología , Periodontitis/prevención & control , Triazinas/farmacología , Animales , Antígenos Bacterianos/inmunología , Células Cultivadas , Células Epiteliales/patología , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Periodontitis/genética , Periodontitis/microbiología , Ratas , Transducción de Señal/efectos de los fármacos , Triazinas/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
J Mol Neurosci ; 39(1-2): 175-84, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19277492

RESUMEN

The physiological function of interleukin-6 within the central nervous system (CNS) is complex; interleukin-6 exerts neurotrophic and neuroprotective effects and yet can also function as a mediator of inflammation, demyelination, and astrogliosis depending on the cellular context. However, the roles of interleukin-6 in astrocytes are poorly understood. In the present study, we investigated the effect of the pro-inflammatory cytokine interleukin-6 on the production of the inflammatory mediator prostaglandin E(2) in mouse astrocytes. Interleukin-6 stimulated prostaglandin E(2) production in a time-dependent fashion via a rapid and transient induction of cyclooxygenase-2 messenger RNA, followed by cyclooxygenase-2 protein synthesis. Interleukin-6 may act on the nervous system by interacting with its specific soluble interleukin-6 receptor and the signal transducer 130-kDa glycoprotein. Simultaneous treatment of astrocytes with interleukin-6 and soluble interleukin-6 receptor caused marked induction of prostaglandin E(2) synthesis, and this effect was suppressed by adding a neutralizing antibody against soluble interleukin-6 receptor. Furthermore, the mouse 130-kDa glycoprotein antibody suppressed prostaglandin E(2) formation induced by interleukin-6, as well as interleukin-6/soluble interleukin-6 receptor complexes, in a dose-dependent manner. These results indicate that interleukin-6/soluble interleukin-6 receptor complexes and the signal transducer 130-kDa glycoprotein play an important role in the regulation of cyclooxygenase-2 expression and subsequent prostaglandin E(2) formation in mouse astrocytes and that interleukin-6 is an important regulator of immune and inflammatory processes in the CNS.


Asunto(s)
Astrocitos/metabolismo , Dinoprostona/metabolismo , Interleucina-6/metabolismo , Animales , Astrocitos/citología , Células Cultivadas , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Receptor gp130 de Citocinas/metabolismo , Humanos , Interleucina-6/genética , Ratones , Ratones Endogámicos C57BL , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA