Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Chembiochem ; 25(13): e202400276, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38710652

RESUMEN

Living cells contain various types of organic cations that may interact with nucleic acids. In order to understand the nucleic acid-binding properties of organic cations of different sizes, we investigated the ability of simple organic cations to inhibit the RNA phosphodiester bond cleavage promoted by Mg2+, Pb2+, and RNA-cleaving serum proteins. Kinetic analysis using chimeric DNA-RNA oligonucleotides showed that the cleavage at ribonucleotide sites was inhibited in the presence of monovalent cations comprising alkyl chains or benzene rings. The comparison of the cleavage rates in the presence of quaternary ammonium and phosphonium ions indicated that the steric hindrance effect of organic cations on their binding to the RNA backbone is significant when the cation size is larger than the phosphate-phosphate distance of a single-stranded nucleic acid. The cleavage inhibition was also observed for ribonucleotides located in long loops but not in short loops of oligonucleotide structures, indicating less efficient binding of bulky cations to structurally constrained regions. These results reveal the unique nucleic acid-binding properties of bulky cations distinct from those of metal ions.


Asunto(s)
Cationes , ARN , ARN/química , Cationes/química , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...