RESUMEN
The formalin test is one approach to studying acute pain in rodents. Similar to formalin, injection with glutamate and veratrine can also produce a nociceptive response. This study investigated whether opioid-related compounds could suppress glutamate- and veratrine-induced nociceptive responses in mice at the same dose. The administration of morphine (3 mg/kg), hydromorphone (0.4 mg/kg), or fentanyl (0.03 mg/kg) suppressed glutamate-induced nociceptive response, but not veratrine-induced nociceptive response at the same doses. However, high doses of morphine (10 mg/kg), hydromorphone (2 mg/kg), or fentanyl (0.1 mg/kg) produced a significant reduction in the veratrine-induced nociceptive response. These results indicate that high doses are required when using morphine, hydromorphone, or fentanyl for sodium channel-related neuropathic pain, such as ectopic activity. As a result, concerns have arisen about overdose and abuse if the dose of opioids is steadily increased to relieve pain. In contrast, trimebutine (100 mg/kg) and fentanyl analog isobutyrylfentanyl (iBF; 0.1 mg/kg) suppressed both glutamate- and veratrine-induced nociceptive response. Furthermore, nor-isobutyrylfentanyl (nor-iBF; 1 mg/kg), which is a metabolite of iBF, suppressed veratrine-induced nociceptive response. Besides, the optimal antinociceptive dose of iBF, unlike fentanyl, only slightly increased locomotor activity and did not slow gastrointestinal transit. Cancer pain is a complex condition driven by inflammatory, neuropathic, and cancer-specific mechanisms. Thus, iBF may have the potential to be a superior analgesic than fentanyl.
Asunto(s)
Analgésicos Opioides , Fentanilo , Animales , Fentanilo/farmacología , Fentanilo/análogos & derivados , Masculino , Ratones , Analgésicos Opioides/farmacología , Ácido Glutámico/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Morfina/farmacologíaRESUMEN
Bile acids (BAs) reside in the brain and are probably involved in some neurological disorders. The view that most of unconjugated BAs in the brain are derived across the blood-brain barrier from the periphery by passive diffusion depending on their hydrophobicity is currently dominant, but some studies have made conflicting claims. In this study, the correlation analysis between the rat brain and serum levels of unconjugated BAs with a wider range of hydrophobicity was conducted to obtain further evidence about the blood-to-brain influx of unconjugated BAs by passive diffusion. We first developed the precise, accurate and matrix effect-free LC/ESI-MS/MS methods for quantifying eight major unconjugated BAs in the rat brain and serum. Derivatization was employed for increasing the assay sensitivity and specificity. The analysis using these methods reproduced the strong positive correlations between the brain and serum levels, and significant higher concentrations in the serum than in the brain for all the unconjugated BAs. The BA with the higher logPow (hydrophobicity) had the higher brain-to-serum concentration ratio (mono- > di- > trihydroxy BAs). Furthermore, the hydrophobicity was considered as the stronger factor for the blood-to-brain influx of the BAs than the serum protein binding ratio. Thus, this study provided further evidence supporting that passive diffusion is the major mechanism for the blood-to-brain influx of the unconjugated BAs.
Asunto(s)
Ácidos y Sales Biliares , Espectrometría de Masas en Tándem , Ratas , Animales , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida con Espectrometría de Masas , EncéfaloRESUMEN
Allopregnanolone (AP) is a neurosteroid synthesized in the brain and a positive allosteric modulator of γ-aminobutyric acid (GABA) type A receptors. Some drugs possessing the aryloxypropanamine (AOPA) pharmacophore, such as fluoxetine, exert their central nervous system (CNS) effects by increasing the brain AP. Although duloxetine (DLX), dapoxetine (DPX), atomoxetine (ATX) and propranolol (PRL) also possess the AOPA pharmacophore and are used to treat some psychiatric disorders, the capabilities of these drugs to increase the brain AP and the possible involvement of AP in their CNS effects remain to be fully elucidated. To clarify these points, we first developed a method for quantifying AP in the rat brain by liquid chromatography/electrospray ionization-tandem mass spectrometry. Analysis of the changes in the brain AP levels using this method revealed that the intraperitoneal administration of DLX (10 mg/kg), DPX (10 mg/kg) and PRL (20 mg/kg) significantly increased the brain AP (DLX: < 0.40-2.74 ng/g tissue, DPX: 1.48-3.83 ng/g tissue and PRL: < 0.40-2.09 ng/g tissue) compared to the saline administration (<0.40 ng/g tissue). These results suggested the possible involvement of the GABAergic neurosteroid, AP, in the central actions of DLX, DPX and PRL. In contrast, ATX (10 mg/kg) did not affect the AP levels in the brain. In addition, the brain and serum AP levels had a remarkably high positive correlation after the administration of DLX, DPX and PRL. Thus, this study proposed the AP-related novel mechanism of actions of DLX, DPX and PRL in the CNS.
Asunto(s)
Neuroesteroides , Pregnanolona , Animales , Ratas , Encéfalo , Clorhidrato de Duloxetina/farmacología , Preparaciones Farmacéuticas , Farmacóforo , Pregnanolona/farmacología , Propranolol/farmacología , Propilaminas/química , Propilaminas/farmacologíaRESUMEN
The structural and functional relationships of glycosaminoglycans (GAGs) derived from marine organisms have been investigated, suggesting that marine invertebrates, particularly Bivalvia, are abundant sources of highly sulfated or branched GAGs. In this study, we identified a novel fucosylated heparan sulfate (Fuc-HS) from the midgut gland of the Japanese scallop, Patinopecten yessoensis. Scallop HS showed resistance to GAG-degrading enzymes, including chondroitinases and heparinases, and susceptibility to heparinases increased when scallop HS was treated with mild acid hydrolysis, which removes the fucosyl group. Moreover, 1H NMR detected significant signals near 1.2-1.3 ppm corresponding to the H-6 methyl proton of fucose residues and small H-3 (3.59 ppm) or H-2 (3.39 ppm) signals of glucuronate (GlcA) were detected, suggesting that the fucose moiety is attached to the C-3 position of GlcA in scallop HS. GC-MS detected peaks corresponding to 1, 3, 5-tri-O-acetyl-2, 4-di-O-methyl-L-fucitol and 1, 4, 5-tri-O-acetyl-2, 3-di-O-methyl-L-fucitol, suggesting that the fucose moiety is 3-O- or 4-O-sulfated. Furthermore, scallop HS showed anti-coagulant and neurite outgrowth-promoting (NOP) activities. These results suggest that the midgut gland of scallops is a valuable source of Fuc-HS with biological activities.
Asunto(s)
Sulfatos de Condroitina , Pectinidae , Animales , Sulfatos de Condroitina/química , Fucosa/química , Glicosaminoglicanos/química , Heparitina Sulfato , Ácido Glucurónico , GlucuronatosRESUMEN
Caffeine is a widely consumed stimulant, known for its positive effects on physical and mental performance. These effects are potentially beneficial for ameliorating cancer-related fatigue, which affects the quality of life of patients with cancer. This study aimed to determine the anti-fatigue and antitumor effects of caffeine in tumor-bearing mice. BALB/c mice were intravenously injected with C26 colon carcinoma cells and fed with normal or 0.05% caffeine-supplemented diet. Fatigue-like behavior was assessed by running performance using a treadmill test. Lung, blood, liver, muscle, and epididymal adipose tissue samples were collected on day 13 and examined. The antitumor effect of caffeine was assessed using subcutaneous tumor-bearing mice fed with 0.05% caffeine-supplemented diet, and the tumor volume was measured. C26 tumor-bearing mice showed fatigue-like behavior associated with hypoglycemia, depleted liver glycogen and non-esterified fatty acid (NEFA) levels. C26 tumor-bearing mice fed with 0.05% caffeine-supplemented diet showed improved running performance associated with restored NEFA levels. However, exacerbated hypoglycemia and liver glycogen levels after caffeine consumption may be due to tumor-induced catabolic signals, as the tumor volume was not affected. Collectively, caffeine may exert anti-fatigue effects through enhanced lipolysis leading to restored NEFA levels, which can be used as an alternative energy source.
Asunto(s)
Neoplasias del Colon , Hipoglucemia , Ratones , Animales , Cafeína/farmacología , Glucógeno Hepático , Ácidos Grasos no Esterificados , Calidad de Vida , Dieta , Neoplasias del Colon/patología , Hipoglucemia/complicacionesRESUMEN
To develop and assess new dosage forms for the alternative to existing oral medication for peripheral neuropathy, a hydrogel film in the skin patch formation containing tramadol hydrochloride (TRA), a water-soluble drug used as an analgesic, was prepared and evaluated. A hydrogel film composed of 20%(w/w) hydroxypropyl methylcellulose (HPMC) irradiated with electron beams had high transparency and elasticity similar to commercially available wound dressings and soft tissues, suggesting that it is a suitable substrate for TRA. The inclusion of TRA was enabled by immersing the HPMC hydrogel film in TRA aqueous solution. The release and skin permeation of TRA from TRA-containing hydrogel films differed depending on the electron beam dose. Moreover, the analgesic effects in mice were confirmed in a dose-dependent manner. This study demonstrated the usefulness of a hydrogel film containing TRA as a new dosage form alternative to the existing oral medication for peripheral neuropathy.
Asunto(s)
Neuralgia , Tramadol , Ratones , Animales , Derivados de la Hipromelosa , Neuralgia/tratamiento farmacológico , Agua , Analgésicos , MetilcelulosaRESUMEN
OBJECTIVES: According to previous studies, ultrasound exposure appears to be a noninvasive method for modulating brain activity related to cognition and consciousness; however, its effects on emotional states remain unclear. Therefore, an animal model is required in which the effects and effect mechanisms of ultrasound exposure can be investigated. Thus, we used olfactory bulbectomized rats as an animal model of depression and investigated their emotional state following ultrasound exposure. METHODS: In male Wistar/ST olfactory bulbectomized rats, hyperemotionality was evaluated according to hyperemotionality scoring and the scores before and after 24-h ultrasound exposure were compared. Elevated plus maze (EPM) tests were also conducted after 24-h ultrasound exposure, and blood samples were collected in which plasma corticosterone concentrations were measured. RESULTS: Following exposure to high-frequency (~50 kHz) ultrasound vocalizations (USVs) associated with the pleasant emotions of rats, the hyperemotionality scores of olfactory bulbectomized rats were significantly reduced. Additionally, the latency of the first entry into the open arm of the EPM was significantly decreased in USV-exposed olfactory bulbectomized rats, as were their plasma corticosterone levels. Furthermore, artificial ultrasound (50 kHz) at a similar frequency to that of USV also significantly decreased the hyperemotionality score of olfactory bulbectomized rats. CONCLUSIONS: Ultrasound exposure improved depressive-like behavior in olfactory bulbectomized rats and reduced their plasma corticosterone levels. Thus, we recommend the use of olfactory bulbectomized rats as an animal model for investigating the effects and effect mechanisms of ultrasound exposure.
Asunto(s)
Corticosterona , Depresión , Animales , Conducta Animal , Modelos Animales de Enfermedad , Masculino , Bulbo Olfatorio/cirugía , Ratas , Ratas Wistar , OlfatoRESUMEN
BACKGROUND: Nerve invasion (N-inv) is an important prognostic factor in pancreatic ductal adenocarcinoma (PDAC). Elucidation of circulating N-inv stimulators could provide deeper insights and novel perspectives for PDAC therapy. The interleukin (IL)-6/gp130 axis was evaluated in this study as a candidate N-inv stimulator. METHODS: A human pancreatic cancer (PC) cell, Capan-1, was confirmed to have the stimulant activity of IL-6/gp130 axis through the evaluation of mRNA, cell surface protein and intracellular protein levels and chemotaxis and wound healing assay. The upregulation of IL-6/gp130 axis was evaluated using tumor-derived IL-6 level and intratumoral pSTAT3 expression in N-inv of murine sciatic nerves by intraneural injection of Capan-1 cell (N-inv model) and using resected pancreatic cancer tissue and clinical data from 46 PDAC patients. RESULTS: mRNA and protein expressions of IL-6 and IL-6 receptor were found in whole cell lysate and condition medium from PC cell. Cell surface protein expression of gp130 were clearly detected on PC cell. IL-6 promoted migration and chemotaxis of PC cell. Serum IL-6 and tumoral IL-6 mRNA levels in N-inv model mice were significantly higher than those in subcutaneous tumor mice (p = 0.004 and p = 0.002, respectively). Silencing of IL-6 and gp130 on PC cell and administration of an anti-IL-6 receptor antibody, tocilizumab, suppressed N-inv, compared to each control (p = 0.070, p = 0.118 and p = 0.122, respectively). In PDAC patients, the high-N-inv group showed poor prognosis (p =0.059) and elevated serum levels of IL-6 and C-reactive protein, synthesis of which is promoted by IL-6, compared to those in the low-N-inv group (p = 0.006 and p = 0.075, respectively). Tumoral gp130 expression at N-inv was higher than that in the primary pancreatic tumor (p = 0.026). CONCLUSION: Biological activity of IL-6/gp130 axis promoted N-inv in murine model and was upregulated in PDAC patients with severe N-inv. This study is the first evidence that the IL-6/gp130 axis offers a potential therapeutic target in PDAC with N-inv.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Interleucina-6/genética , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/uso terapéutico , Transducción de Señal , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/metabolismo , Proteínas de la Membrana/genética , ARN Mensajero , Línea Celular Tumoral , Proliferación Celular , Neoplasias PancreáticasRESUMEN
Stress has been shown to affect brain activity and exert potent and complex modulatory effects on pain. Several behavioral tests have shown that acute stress produces hyperalgesia, depending on the stress conditions. In the present study, we investigated the effects of single restraint stress on the tactile threshold and anxiety sensitivity in mice. Mice were evaluated for the tactile threshold using von Frey filaments and for anxiety sensitivity using the elevated plus maze (EPM) test. Tactile thresholds were lowered by both 2 and 4 hour of restraint stress, but anxiety-like behaviors were observed only after 4 hour of restraint stress in the EPM test. In addition, we found that alfaxalone, which is a positive allosteric modulator of the γ-aminobutyric acid (GABA)A receptor, prevented restraint stress-induced hyperalgesia-like and anxiety-like behaviors. These results indicate that GABAergic function appears to be critical in the regulation of physical stress-induced hyperalgesia and anxiety.
Asunto(s)
Hiperalgesia , Pregnanodionas , Animales , Ansiedad/etiología , Hiperalgesia/etiología , Ratones , Restricción FísicaRESUMEN
Ultrasonic vocalization (USVs) is a promising tool to measure behavioral anxiety in rodents as USV recording is noninvasive, behaviorally relevant, ethological, and reproducible. Studies reporting the effects of stress-induced USVs in adult mice remain limited and debated. We investigated the conditions under which mice emit aversive USVs and evaluated the effects of psychiatric drugs on stress-induced USVs. Male C57BL/6J mice were used. USVs during entire stress sessions were recorded according to their frequency. To investigate the effect of psychiatric drugs on USVs, the number of USVs under cold-restraint stress conditions before and after drug administration was compared. Immediately after stress exposure, blood samples were collected and plasma corticosterone levels were measured. The combination of cold and restraint stress conditions significantly increased the USV numbers and plasma corticosterone levels compared with each stress alone. A benzodiazepine anxiolytic (midazolam) and δ-opioid receptor agonist putative anxiolytic (KNT-127) significantly reduced the stress-induced USV number and plasma corticosterone levels; however, a monoaminergic antidepressant (duloxetine) and N-methyl-D-aspartic acid receptor antagonist antidepressant (ketamine) did not reduce the USV numbers. No changes were noted in the USV numbers after repeated exposure to cold-restraint stress on days 1 and 3. The suppressive effect of midazolam on day 3 was comparable to that on day 1. Stress-induced USV may be used as a quantitative measure of anxiety to systematically assess the effects of anxiolytics. Therefore, cold-restraint stress-induced USVs may be used as a novel tool to measure rodent anxiety and as a useful anxiolytic-screening system.
Asunto(s)
Ansiolíticos , Vocalización Animal , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Ansiedad/tratamiento farmacológico , Ansiedad/etiología , Ansiedad/psicología , Masculino , Ratones , Ratones Endogámicos C57BL , UltrasonidoRESUMEN
We aimed to evaluate the association of circulating growth differentiation factor 15 (GDF-15) with cachexia symptoms and the biological activity of advanced pancreatic cancer (APC). Treatment-naïve patients with liver metastasis of APC or with benign pancreatic disease were retrospectively analyzed. Clinical data, blood samples, and biopsy specimens of liver metastasis were collected prior to anti-cancer treatment. Serum GDF-15 levels and multiple protein expressions in lysates extracted from liver metastasis were measured by enzyme-linked immuno-sorbent assay and reverse-phase protein array, respectively. The cut-off for serum GDF-15 was determined as 3356.6 pg/mL, the mean plus two standard deviations for benign pancreatic disease. The high-GDF-15 group was characterized as showing low Karnofsky performance status (KPS) (p = 0.037), poor Eastern Cooperative Oncology Group performance status (ECOG-PS) (p = 0.049), severe appetite loss (p = 0.011), and high serum levels of carbohydrate antigen 19-9 (p = 0.019) and C-reactive protein (p = 0.009). Tumors of the high-GDF-15 group expressed high levels of phosphorylated (p)JNK (p = 0.007) and pAkt (p = 0.040). APC patients with high serum GDF-15 showed signatures of cachexia and activation of the signaling pathways involving Akt and JNK in the tumor. This study indicated circulating GDF-15 could be associated with cachectic symptoms in APC.
RESUMEN
Receptor for advanced glycation end-products (RAGE) and Toll-like receptors (TLRs) are potential therapeutic targets in the treatment of acute and chronic inflammatory diseases. We previously reported that trimebutine, a spasmolytic drug, suppresses RAGE pro-inflammatory signaling pathway in macrophages. The aim of this study was to convert trimebutine to a new small molecule using in silico 3D pharmacophore similarity search, and dissect the mechanistic anti-inflammatory basis. Of note, a unique 3-styrylchromone (3SC), 7-methoxy-3-trimethoxy-SC (7M3TMSC), converted from trimebutine 3D pharmacophore potently suppressed both high mobility group box 1-RAGE and lipopolysaccharide-TLR4 signaling pathways in macrophage-like RAW264.7 cells. More importantly, 7M3TMSC inhibited the phosphorylation of extracellular signaling-regulated kinase 1 and 2 (ERK1/2) and downregulated the production of cytokines, such as interleukin-6. Furthermore, 3D pharmacophore-activity relationship analyses revealed that the hydrogen bond acceptors of the trimethoxy groups in a 3-styryl moiety and the 7-methoxy-group in a chromone moiety in this compound are significant in the dual anti-inflammatory activity. Thus, 7M3TMSC may provide an important scaffold for the development of a new type of anti-inflammatory dual effective drugs targeting RAGE/TLR4-ERK1/2 signaling.
Asunto(s)
Antiinflamatorios/farmacología , Cromonas/farmacología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor Toll-Like 4/metabolismo , Trimebutino/farmacología , Animales , Antiinflamatorios/química , Cromonas/química , Proteína HMGB1/metabolismo , Humanos , Ratones , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Trimebutino/químicaRESUMEN
Cancer cells upregulate the expression levels of glycolytic enzymes in order to reach the increased glycolysis required. One such upregulated glycolytic enzyme is glyoxalase 1 (GLO 1), which catalyzes the conversion of toxic methylglyoxal to nontoxic S-D-lactoylglutathione. Protein kinase Cλ (PKCλ) is also upregulated in various types of cancer and is involved in cancer progression. In the present study, the association between enhanced glycolysis and PKCλ in breast cancer was investigated. In human breast cancer, high GLO 1 expression was associated with high PKCλ expression at the protein (P<0.01) and mRNA levels (P<0.01). Furthermore, Wilcoxon and Cox regression model analysis revealed that patients with stage III-IV tumors with high GLO 1 and PKCλ expression had poor overall survival compared with patients expressing lower levels of these genes [P=0.040 (Gehan-Breslow generalized Wilcoxon test) and P=0.031 (hazard ratio, 2.36; 95% confidence interval, 1.08-5.16), respectively]. Treatment of MDA-MB-157 and MDA-MB-468 human basal-like breast cancer cells with TLSC702 (a GLO 1 inhibitor) and/or aurothiomalate (a PKCλ inhibitor) reduced both cell viability and tumor-sphere formation. These results suggested that GLO 1 and PKCλ were cooperatively involved in cancer progression and contributed to a poor prognosis in breast cancer. In conclusion, GLO 1 and PKCλ serve as potentially effective therapeutic targets for treatment of late-stage human breast cancer.
RESUMEN
Antidepressants exert their analgesic effects by inhibiting the reuptake of noradrenaline. Several antidepressants have been shown to block the sodium channels, which might contribute to their analgesic potency. The aim of this study was to determine whether serotonin-noradrenaline reuptake inhibitors (SNRIs) could produce antinociceptive effects via sodium channel blockade using the veratrine test in mice. Furthermore, the effects of these agents on the veratrine test were examined to elucidate the effects of several antidepressants and tramadol on sodium channels. The administration of duloxetine (10 mg/kg) and venlafaxine (30 mg/kg) suppressed cuff-induced mechanical allodynia; however, these antinociceptive effects were only partially suppressed by atipamezole. Furthermore, duloxetine and venlafaxine demonstrated antinociceptive effects via sodium channel blockade, as assayed by the veratrine test. In addition, several antidepressants, including amitriptyline, paroxetine and mirtazapine, reduced veratrine-induced nociception. In contrast, milnacipran and tramadol did not alter the veratrine-induced nociception. These results indicated that, in addition to the primary action of SNRIs on monoamine transporters, sodium channel blockade might be involved in the antinociceptive activities of duloxetine and venlafaxine, but not milnacipran.
Asunto(s)
Clorhidrato de Duloxetina/farmacología , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Inhibidores de Captación de Serotonina y Norepinefrina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Clorhidrato de Venlafaxina/farmacología , Animales , Conducta Animal/efectos de los fármacos , Clorhidrato de Duloxetina/uso terapéutico , Hiperalgesia/metabolismo , Ratones , Neuralgia/metabolismo , Dimensión del Dolor , Inhibidores de Captación de Serotonina y Norepinefrina/uso terapéutico , Bloqueadores de los Canales de Sodio/uso terapéutico , Clorhidrato de Venlafaxina/uso terapéuticoRESUMEN
Background/Aim: Fatigue is the most common symptom in patients with cancer undergoing radiation therapy or cancer chemotherapy. However, cancer-related fatigue remains undertreated and poorly understood. Materials and Methods: Mice were administered a single dose of cisplatin (10 mg/kg, intraperitoneally) or saline (as a control) and then treated with sucrose, fructose, glucose (each at 500 or 5,000 mg/kg, orally), or saline (control) daily for 4 days. cisplatin-induced fatigue-like behavior was investigated by assessment of running activity on a treadmill. The influence of glucose intake on tumor growth was also examined in Lewis lung carcinoma (LLC)-bearing mice. Results: Administration of sucrose and glucose improved cisplatin-induced fatigue-like behavior in mice, whereas administration of fructose showed only slight antifatigue effects. Although glucose-fed mice showed increased tumor growth, this was balanced out by the powerful cytotoxicity of cisplatin. Conclusion: Sucrose, and especially glucose, may improve patient quality of life during treatment with anticancer agents by preventing fatigue without interfering with the antitumor effects of cisplatin.
RESUMEN
Extracellular high-mobility group box 1 (HMGB1) is known to mediate the inflammatory response through pattern recognition receptors, including the receptor for advanced glycation end products (RAGE) or the toll-like receptors (TLRs). The aim of the present study was to investigate whether papaverine, a novel RAGE inhibitor, could suppress inflammatory pain in mice after several time points, which was induced by the injection of complete Freund's adjuvant (CFA). We also investigated the influence of redox modulation during a state of chronic inflammatory pain. Although papaverine did not suppress CFA-induced mechanical allodynia on Day 7, papaverine significantly suppressed CFA-induced mechanical allodynia on Days 14 and 28. In contrast, the radical scavenger N-tert-Butyl-α-phenylnitrone (PBN) suppressed mechanical allodynia in mice on Days 7 and 14, but not on Day 28. We demonstrated that the RAGE inhibitor improves mechanical allodynia in chronic inflammatory conditions. Moreover, we also found that high levels of reactive oxygen species (ROS) contributed to the early phase of CFA-induced mechanical allodynia. Precisely, lower ROS levels contributed to the inflammatory pain response via the all-thiol HMGB1/RAGE signaling pathway during the chronic state. These findings led us to propose that ROS levels modulate RAGE and/or TLR4-mediated inflammatory allodynia by regulating the concentrations of disulfide HMGB1 or all-thiol HMGB1.
Asunto(s)
Dolor , Papaverina , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Ratones , Papaverina/farmacología , Papaverina/uso terapéutico , Receptor para Productos Finales de Glicación Avanzada/metabolismoRESUMEN
We previously identified papaverine as an inhibitor of receptor for advanced glycation end-products (RAGE) and showed its suppressive effect on high mobility group box 1 (HMGB1)-mediated responses to inflammation. Here, we found trimebutine to be a 3D pharmacophore mimetics of papaverine. Trimebutine was revealed to have more potent suppressive effects on HMGB1-induced production of pro-inflammatory cytokines, such as interleukin-6 and tumor necrosis factor-α in macrophage-like RAW264.7 cells and mouse bone marrow primarily differentiated macrophages than did papaverine. However, the inhibitory effect of trimebutine on the interaction of HMGB1 and RAGE was weaker than that of papaverine. Importantly, mechanism-of-action analyses revealed that trimebutine strongly inhibited the activation of RAGE downstream inflammatory signaling pathways, especially the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), which are mediator/effector kinases recruited to the intracellular domain of RAGE. Consequently, the activation of Jun amino terminal kinase, which is an important effector kinase for the up-regulation of pro-inflammatory cytokines, was inhibited. Taken together, these results suggest that trimebutine may exert its suppressive effect on the HMGB1-RAGE inflammatory signal pathways by strongly blocking the recruitment of ERK1/2 to the intracellular tail domain of RAGE in addition to its weak inhibition of the extracellular interaction of HMGB1 with RAGE. Thus, trimebutine may provide a unique scaffold for the development of novel dual inhibitors of RAGE for inflammatory diseases.
Asunto(s)
Proteína HMGB1/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Trimebutino/farmacología , Animales , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Interleucina-6/metabolismo , Quinasas Janus/antagonistas & inhibidores , Macrófagos , Ratones , Papaverina/química , Papaverina/farmacología , Células RAW 264.7 , Trimebutino/química , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Rodents perceive the emotional states of conspecifics using vision. In the present study, we demonstrated that exposure to the video-recorded distress of conspecifics induces stress responses in male C57BL/6J mice. A single exposure to a video-recorded scene of the social defeat stress (SDS) increased plasma corticosterone levels in these mice. This physiological change was suppressed by blocking the visual information, suggesting that vision plays a crucial role in inducing stress responses. Furthermore, after exposure to the video, there were increased numbers of c-Fos-positive neurons in the anterior cingulate cortex and other brain areas that are associated with the negative valence and empathy systems, but not in the regions related to the pain signaling. In addition, repeated exposure to SDS videos induced an apparent reduction in reward sensitivity in the sucrose preference test, but did not affect avoidance behaviour in the social interaction test or immobility behaviour in the forced swim test. Reduced reward sensitivity in mice reflects anhedonia, which is a core symptom of depression in humans. Our video SDS model therefore provides a unique opportunity to not only understand the mechanisms underlying stress-induced anhedonia, but also to screen effective candidate molecules for stress-related disorders with greater reproducibility.
Asunto(s)
Encéfalo/fisiopatología , Neuronas/fisiología , Estimulación Luminosa , Recompensa , Derrota Social , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología , Grabación en Video , Visión Ocular/fisiología , Percepción Visual/fisiología , Anhedonia , Animales , Conducta de Elección/fisiología , Corticosterona , Depresión/psicología , Modelos Animales de Enfermedad , Empatía , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Estrés Psicológico/sangre , Estrés Psicológico/etiologíaRESUMEN
We investigated whether tramadol could suppress both neuropathic and inflammatory pain in mice at the same dose level. We also examined the effects of drugs metabolized by glucuronidase, such as acetaminophen (ACAP), indomethacin, probenecid, and valproate, on the antinociceptive activity of tramadol. The administration of 5.6 or 10 mg/kg tramadol suppressed cuff-induced mechanical allodynia, but 10 mg/kg tramadol did not suppress complete Freund's adjuvant (CFA)-induced mechanical allodynia. Although neither tramadol (10 mg/kg) nor ACAP (100 mg/kg) alone produced an antinociceptive effect, their combination suppressed CFA-induced mechanical allodynia. Moreover, pretreatment naloxone, an opioid receptor antagonist, significantly attenuated the antinociceptive effects induced by the combination of tramadol and ACAP and slowed gastrointestinal transit. Similar to ACAP, the combination of tramadol and probenecid or valproate, which has the potential to inhibit uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT), also suppressed the CFA-induced mechanical allodynia and slowed gastrointestinal transit. We concluded that tramadol was more beneficial for the treatment of neuropathic pain than inflammatory pain. Furthermore, the antinociceptive effects of the tramadol and ACAP combination were mediated by the µ-opioid receptor, and were thought to be related, at least in part, to the accumulation of the active metabolite, M1.
Asunto(s)
Acetaminofén/uso terapéutico , Analgésicos no Narcóticos/uso terapéutico , Analgésicos Opioides/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Tramadol/uso terapéutico , Animales , Sinergismo Farmacológico , Quimioterapia Combinada , Tránsito Gastrointestinal/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Receptores Opioides mu/fisiologíaRESUMEN
BACKGROUND/AIM: This study aimed to determine the anxiolytic effect of a putative glyoxalase 1 inhibitor, piceatannol, as well as its antitumor activities on the stress-induced tumor growth of Lewis lung carcinoma. MATERIALS AND METHODS: The anxiolytic activities of piceatannol (1-30 mg/kg) were assessed using the elevated plus maze (EPM) test. We also evaluated the pharmacological modulation of stress-induced tumor growth; the mice were treated with piceatannol (3 and 30 mg/kg) from the 10th day till the 19th day after administration of the LLC cells. RESULTS: At the low dose (3 mg/kg), piceatannol significantly increased the time spent in the open arms of the EPM test when compared with the vehicle. At higher doses (30 mg/kg), it significantly suppressed the stress-induced enhancement of tumor growth. CONCLUSION: A low dose of piceatannol exerts an anxiolytic effect, and high doses have an antitumor effect.