Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37571196

RESUMEN

A simple and compact intensity-interrogated terahertz (THz) relative humidity (RH) sensing platform is successfully demonstrated in experiments on the basis of combining a porous polymer sensing membrane and a continuous THz electronic system. The RH-sensing membrane is fabricated by surface modification of a porous polymer substrate with hydrophilic and photosensitive copolymer brushes via a UV-induced graft-polymerization process. The intensity interrogation sensing scheme indicated that the power reduction of the 0.4 THz wave is dependent on the grafting density of the copolymer brushes and proportional to the RH percent levels in the humidity-controlled air-sealed chamber. This finding was verified by the water contact angle measurement. Based on the slope of the proportional relation, the best sensitivity of the hydrophilic surface-modified sensing membrane was demonstrated at 0.0423 mV/% RH at the copolymer brush density of 1.57 mg/mm3 grafted on the single side of the sensing membrane. The sensitivity corresponds to a detection limit of approximately 1% RH. The THz RH sensing membrane was proven to exhibit the advantages of low loss, low cost, flexibility, high sensitivity, high RH resolution, and a wide RH working range of 25-99%. Thus, it is a good candidate for novel applications of wearable electronics, water- or moisture-related industrial and bio-sensing.

2.
Materials (Basel) ; 16(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37374646

RESUMEN

Terahertz (THz) plasmonic metamaterial, based on a metal-wire-woven hole array (MWW-HA), is investigated for the distinct power depletion in the transmittance spectrum of 0.1-2 THz, including the reflected waves from metal holes and woven metal wires. Woven metal wires have four orders of power depletion, which perform sharp dips in a transmittance spectrum. However, only the first-order dip at the metal-hole-reflection band dominates specular reflection with a phase retardation of approximately π. The optical path length and metal surface conductivity are modified to study MWW-HA specular reflection. This experimental modification shows that the first order of MWW-HA power depletion is sustainable and sensitively correlated with a bending angle of the woven metal wire. Specularly reflected THz waves are successfully presented in hollow-core pipe wave guidance specified from MWW-HA pipe wall reflectivity.

3.
Biosensors (Basel) ; 12(9)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36140054

RESUMEN

Terahertz (THz) spectroscopy has been proven as an effective detection means for the label-free and nondestructive sensing of biochemical molecules based on their unique roto-vibrational transitions. However, the conventional THz spectroscopic system is unsuitable for minute material sensing due to its far-field detection scheme, low sample amount, and lack of spectral characteristics, leading to low absorption cross-sections and sensitivity. In this study, a 3D plasmonic structure based on a metal-coated woven-wire mesh (MCWM) was experimentally and numerically demonstrated for sensing trace amounts of analytes combined with THz spectroscopy. Dual sharp spectral features were exhibited in the transmission spectrum, originating from the resonant excitation of THz surface electromagnetic modes via the aperture and periodicity of the MCWM unit cell. According to the finite element simulation, an enhanced and localized surface field was formed at THz resonant frequencies and was concentrated at the metal gaps near the periodic corrugations of the MCWM, resulting in enormous resonant dip shifts caused by the tiny variations in membrane thicknesses and refractive indices. Different types and quantities of analytes, including hydrophilic biopolymer (PAA) membrane, nonuniformly distributed microparticles to mimic macro-biomolecules or cells, and electrolyte salts of PBS, were successfully identified by the MCWM sensor with the best thickness and refractive index sensitivities approaching 8.26 GHz/µm and 547 GHz/RIU, respectively. The demonstrated detection limit of thickness and molecular concentration could respectively achieve nanometer and femtomolar scales in PAA macromolecular detection, surpassing the available metallic mesh devices. The MCWM-based sensing platform presents a rapid, inexpensive, and simple analysis method, potentially paving the way for a new generation of label-free microanalysis sensors.


Asunto(s)
Espectroscopía de Terahertz , Metales , Refractometría , Sales (Química) , Espectroscopía de Terahertz/métodos
4.
Materials (Basel) ; 15(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269101

RESUMEN

Metal-hole-supported terahertz (THz) waves through the structure of a metal-wire-woven hole array (MWW-HA) present high-frequency-passed transmittance spectra of one plasmonic metamaterial with artificial plasmonic frequencies, which are inversely proportional to metal-hole widths. For the transmitted THz waves of MWW-HA, transverse-electric (TE) and transverse-magnetic (TM) waveguide modes mix within a symmetric metal-hole boundary. THz resonance waves transversely crossing the holes of MWW-HA are experimentally characterized with spectral peaks in the frequency range of 0.1-2 THz that are correlated with aperture sizes, unit-cell-hole widths, metal-wire thicknesses, and wire-bending angles. The metal-hole-transported resonance waves of MWW-HA are dominated by TE waveguide modes instead of TM ones because a hole width of MWW-HA is approximate to the half wavelength of a resonance wave. The round metal edges of the woven metal wires can minimize the effective optical length of a thick metal hole to transmit THz resonance waves, thereby resulting the smallest rotation angle of linear polarization and high transmittance up to 0.94. An MWW-HA structure is therefore reliable for supporting metal-hole resonance waves with low resistance, whereas a metal-slab-perforated hole array cannot achieve the same result.

5.
Opt Express ; 29(2): 538-551, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33726287

RESUMEN

In this work, one metallic photonic crystal waveguide composed of periodic metal rod arrays (MRAs) is experimentally and numerically demonstrated in terahertz frequencies. Such waveguides fabricated by 3D printers exhibit two resonant modes: the fundamental mode and the high-order mode, separating by a broad bandgap. Compared to the fundamental mode, the high-order mode shows higher field confinement and more sensitive to the geometry changes. By breaking the structure parameter, i.e., increasing or decreasing the metal rod interspace, the spectral positions, bandwidths, as well as the transmittances of high-order modes can be optimized. With broken symmetry in MRAs, the third resonant mode having high transmittance has emerged in the transmission spectrum. Results showing that fine-tuning in the alignment of metal rods leads to a great change in the transmission of high-order modes. These findings suggest that the transportation efficiency of THz waves through an MRA is tunable by breaking the structural symmetry.

6.
Sensors (Basel) ; 20(21)2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153176

RESUMEN

Gas sensing to recognize volatile liquids is successfully conducted through pipe-guided terahertz (THz) radiation in a reflective and label-free manner. The hollow core of a pipe waveguide can efficiently deliver the sensing probe of the THz confined waveguide fields to any place where dangerous vapors exist. Target vapors that naturally diffuse from a sample site into the pipe core can be detected based on strong interaction between the probe and analyte. The power variation of the THz reflectance spectrum in response to various types and densities of vapors are characterized experimentally using a glass pipe. The most sensitive THz frequency of the pipe waveguide can recognize vapors with a resolution at a low part-per-million level. The investigation found that the sensitivity of the pipe-waveguide sensing scheme is dependent on the vapor absorption strength, which is strongly related to the molecular amount and properties including the dipole moment and mass of a gas molecule.

7.
Opt Express ; 26(18): 22709-22721, 2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-30184927

RESUMEN

A multilayered water-skin model is used to experimentally verify a new sensing method for determining the skin penetration depth of radiation with 0.1-0.9 terahertz (THz) frequencies. A water overlayer is dripped on a skin sample to form a multilayered structure for dynamically measuring the reflected THz-wave amplitude during water desorption. Skin penetration depths can be successfully derived by using the multilayered water-skin model and by considering the measured reflectivity, water dielectric constants, and effective thicknesses of the water overlayer on the skin sample. The maximum penetration depth is approximately 0.3 mm and is obtained with wave frequencies of 0.4-0.6 THz. This penetration depth encompasses the stratum corneum (SC) and part of the epidermis. The high penetration depth of 0.4-0.6 THz waves is also confirmed in the dried and damaged SC.


Asunto(s)
Piel/efectos de la radiación , Radiación Terahertz , Agua/química , Animales , Femenino , Modelos Animales , Dosis de Radiación , Efectividad Biológica Relativa , Porcinos
8.
Opt Express ; 26(12): 15570-15584, 2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-30114816

RESUMEN

Terahertz (THz) waves laterally confined in a 1 mm-thick microstructured planar waveguide are demonstrated on a free-standing metal rod array (MRA), and one apparent rejection band of a transmission spectrum, resembling the bandgap of a photonic crystal, is found in 0.1-0.6 THz. The visibility of the photonic bandgap in the spectral width and power distinction can be manipulated by changing the MRA geometry parameters, including the rod diameter, the interspace between adjacent rods, and the propagation length based on the interactive MRA-layer number. THz transmission ratio enhanced by a large interactive length is verified in 30 MRA layers due to the longitudinally resonant guidance of transverse-magnetic-polarized waveguide modes along the MRA length, which is critical to the interspace width of adjacent rods and the metal coating of the rod surface. For an MRA with respective rod diameter and interspace dimensions of about 0.16 and 0.26 mm, the highest transmission of the guided resonant THz waves are performed at 0.505-0.512 THz frequency with strong confinement on the metal rod tips and a low scattering loss of 0.003 cm-1.

9.
Sci Rep ; 8(1): 3948, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500384

RESUMEN

Atherosclerotic plaque rupture or erosion and subsequent development of platelet-containing thrombus formation is the fundamental cause of cardiovascular disease, which is the most common cause of death and disability worldwide. Here we show the high sensitivity of 200-270 GHz T-ray to distinguish thrombus formation at its early stage from uncoagulated blood. A clinical observational study was conducted to longitudinally monitor the T-ray absorption constant of ex-vivo human blood during the thrombus formation from 29 subjects. Compared with the control group (28 subjects) with uncoagulated blood samples, our analysis indicates the high sensitivity of 200-270 GHz T-Ray to detect thrombus with a low p-value < 10-5. Further analysis supports the significant role of platelet-activated thrombotic cascade, which modified the solvation dynamics of blood and occurred during the early coagulation stage, on the measured T-Ray absorption change. The ability to sense the thrombus formation at its early stage would hold promise for timely identification of patients at risk of various atherothrombotic disorders and save billions of lives.


Asunto(s)
Trombosis/diagnóstico por imagen , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Radiación Terahertz
10.
Opt Express ; 25(8): 8571-8583, 2017 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-28437935

RESUMEN

A terahertz artificial material composed of metal rod array is experimentally investigated on its transmission spectral property and successfully incorporated into microfluidics as a miniaturized terahertz waveguide with an extended optical-path-length for label-free fluidic sensing. Theoretical and experimental characterizations of terahertz transmission spectra show that the wave guidance along the metal rod array originates from the resonance of transverse-electric-polarized waves within the metal rod slits. The extended optical path length along three layers of metal-rod-array enables terahertz waves sufficiently overlapping the fluid molecules embedded among the rods, leading to strongly enhanced phase change by approximately one order of magnitude compared with the blank metal-parallel-plate waveguide. Based on the enhanced phase sensitivity, three kinds of colorless liquid analytes, namely, acetone, methanol, and ethanol, with different dipole moments are identified in situ using the metal-rod-array-based microfluidic sensor. The detection limit in molecular amounts of a liquid analyte is experimentally demonstrated to be less than 0.1 mmol, corresponding to 2.7 µmol/mm2. The phase sensitive terahertz metal-rod-array-based sensor potentially has good adaptability in lab-chip technology for various practical applications, such as industrial toxic fluid detection and medical breath inspection.

11.
Opt Express ; 25(5): 5651-5661, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28380821

RESUMEN

The sensitivity of multilayer microporous polymer structures (MPSs) for in situ and label-free organic vapor sensing is investigated in terahertz frequency. The porous structure provides a large hydrophilic surface area and numerous micropores to adsorb or fill polar vapors, thereby leading to greatly enhanced wave-analyte interaction with an apparent terahertz signal change. Different configurations of MPS with distinct geometric parameters are fabricated to study the structure-dependent sensitivity. The signal responses from the acetone-vapor-filled MPS, represented as effective absorption coefficient and refractive index variation, are proportional to the amounts of vaporized molecules. The responsivity is independent of MPS stacking configuration but can be significantly improved by decreasing the micropore volume. The linear responsivity range for the acetone vapor concentration is as wide as 200 ppm, and the detection limit can be as low as 1 ppm corresponding to the molecular density of 31 pmol/mm3. Different concentrations of toxic methanol adulterated in alcoholic aqueous solutions are successfully identified in their vapor phase by using the MPS-based terahertz sensor with an optimal sensitivity.

12.
Opt Express ; 24(16): 18013-23, 2016 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-27505768

RESUMEN

The feasibility of remote chemical detection is experimentally demonstrated by using a Teflon pipe as a scanning arm in a continuous-terahertz wave sensing and imaging system. Different tablets with distinct mixed ratios of aluminum and polyethylene powders are well distinguished by measuring the power reflectivities of 0.4 THz wave associated with their distinct terahertz refractive indices. Given its refractive index sensitivity and fast response, the reflective terahertz sensing system can be used to real-time trace and quantitatively analyze the ammonium-chloride aerosols produced by the chemical reaction between hydrochloric acid and ammonia vapors. With a tightly focusing terahertz beam spot, the spatial and concentration distributions of the generated chemical product are successfully mapped out by the 1D scan of the flexible pipe probe. In consideration of the responsitivity, power stability, and focused spot size of the system, its detection limit for the ammonium-chloride aerosol is estimated to be approximately 165 nmol/mm2. The reliable and compact terahertz pipe scan system is potentially suitable for practical applications, such as biomedical or industrial fiber endoscopy.

13.
Opt Lett ; 40(12): 2731-4, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26076248

RESUMEN

We performed a THz absorption spectroscopy study on liquid water confined in mesoporous silica materials, MCM-41-S-18 and MCM-41-S-21, of two different pore sizes at room temperatures. We found that stronger confinement with a smaller pore size causes reduced THz absorption, indicating reduced water mobility due to confinement. Combined with recent theoretical studies showing that the microscopic structure of water inside the nanopores can be separated into a core water region and an interfacial water region, our spectroscopy analysis further reveals a bulk-water-like THz absorption behavior in the core water region and a solid-like THz absorption behavior in the interfacial water region.


Asunto(s)
Absorción Fisicoquímica , Nanoporos , Dióxido de Silicio/química , Agua/química , Modelos Moleculares , Conformación Molecular , Porosidad , Espectroscopía de Terahertz
14.
Opt Express ; 23(7): 9440-51, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25968774

RESUMEN

We have conducted a pilot clinical study to not only investigate the sub-THz spectra of ex-vivo fresh human whole blood of 28 patients following 8-hours fasting guideline, but also to find out the critical blood ingredients of which the concentration dominantly affects those sub-THz spectra. A great difference between the sub-THz absorption properties of human blood among different people was observed, while the difference can be up to ~15% of the averaged absorption coefficient of the 28 samples. Our pilot clinical study indicates that triglycerides and the number of red blood cells were two dominant factors to have significant negative correlation to the sub-THz absorption coefficients.

15.
Opt Express ; 23(3): 2048-57, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25836076

RESUMEN

A compact, inexpensive, low loss, highly sensitive gas sensor is important for various biomedical and industrial applications. However, current gas sensors still have an inadequate study in terahertz (THz) frequency range. In this study, simple multilayer-stacked microporous polymer membranes are experimentally validated in the THz regime for organic vapor sensing under ambient atmosphere and room temperature. The hydrophilic porous polymer structure provides a large surface area to adsorb polar vapors, and exhibits excellent discrimination in different types of organic vapors based on distinct dipole moments. Various concentrations of volatile vapors can also be successfully distinguished by detecting the limits of low ppm concentrations. Furthermore, the microporous structural gas sensor has a reasonable response time in repeat usage. This study would provide new perspectives on toxic gas sensing and exhaled breath detection applications in the THz spectral frequency.

16.
Opt Express ; 22(9): 11340-50, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24921831

RESUMEN

A high-aspect-ratio metallic rod array is demonstrated to generate and propagate highly confined terahertz (THz) surface plasmonic waves under end-fire excitation. The transverse modal power distribution and spectral properties of the bound THz plasmonic wave are characterized in two metallic rod arrays with different periods and in two configurations with and without attaching a subwavelength superstrate. The integrated metallic rod array-based waveguide can be used to sense the various thin films deposited on the polypropylene superstrate based on the phase-sensitive mechanism. The sensor exhibits different phase detection sensitivities depending on the modal power immersed in the air gaps between the metallic rods. Deep-subwavelength SiO(2) and ZnO nanofilms with an optical path difference of 252 nm, which is equivalent to λ/3968 at 0.300 THz, are used as analytes to test the integrated plasmonic waveguide. Analysis of the refractive index and thickness of molecular membranes indicates that the metallic rod array-based THz waveguide can integrate various biochip platforms for minute molecular detection, which is extremely less than the coherent length of THz waves.

17.
Opt Express ; 21(18): 21087-96, 2013 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-24103983

RESUMEN

The suitability of a terahertz plasmonic sensor for sensing applications is successfully demonstrated using a hybrid planar waveguide composed of a subwavelength plastic ribbon waveguide and a diffraction metal grating. The subwavelength-confined terahertz plasmons on the hybrid waveguide resonantly reflect from the periodic metal structure under phase-matched conditions and perform resonant transmission dips. The resonant plasmonic frequencies are found to be strongly dependent on the refractive indices and thicknesses of analytes laid on the hybrid planar waveguide. Both plastic films with varying thicknesses and granular analytes in different quantities are successfully identified according to the spectral shifts of resonant dips. An optimal refractive index sensitivity of 261 GHz per refractive index unit is achieved. Within localized and enhanced terahertz plasmonic fields, the minimum detectable optical path difference can be reduced to 2.7 µm corresponding to λ/289, and the minimum detectable amount of analytes in powdered form reaches 17.3 nano-mole/mm(2). The sensing technique can be used to detect particles in a chemical reaction or monitor pollutants.

18.
Opt Express ; 21(5): 6009-19, 2013 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-23482169

RESUMEN

A terahertz plasmonic waveguide is experimentally demonstrated using a plastic ribbon waveguide integrated with a diffraction metal grating to approach subwavelength-scaled confinement and long-distance delivery. Appropriately adjusting the metal-thickness and the periodical slit width of a grating greatly improves both guiding ability and field confinement in the hybrid waveguide structure. The measured lateral decay length of the bound terahertz surface waves on the hybrid waveguide can be reduced to less than λ/4 after propagating a waveguide of around 50mm-long in length. The subwavelength-confined field is potentially advantageous to biomolecular sensing or membrane detection because of the long interaction length between the THz field and analytes.

19.
Opt Express ; 20(6): 5858-66, 2012 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-22418463

RESUMEN

A dielectric pipe waveguide is successfully demonstrated as a terahertz refractive index sensor for powder and liquid-vapor sensing. Without additional engineered structures, a simple pipe waveguide can act as a terahertz resonator based on anti-resonant reflecting guidance, forming multiple resonant transmission-dips. Loading various powders in the ring-cladding or inserting different vapors into the hollow core of the pipe waveguide leads to a significant shift of resonant frequency, and the spectral shift is related to the refractive-index change. The proven detection limit of molecular density could be reduced to 1.6nano-mole/mm3 and the highest sensitivity is demonstrated at around 22.2GHz/refractive-index-unit (RIU), which is comparable to the best THz molecular sensor [Appl. Phys. Lett. 95, 171113 (2009)].


Asunto(s)
Gases/análisis , Microquímica/instrumentación , Reconocimiento de Normas Patrones Automatizadas/métodos , Polvos/análisis , Refractometría/instrumentación , Soluciones/análisis , Resonancia por Plasmón de Superficie/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Transición de Fase , Radiación Terahertz
20.
Opt Express ; 19(1): 162-7, 2011 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-21263553

RESUMEN

A novel tunable terahertz notch filter is demonstrated using antiresonant reflecting hollow waveguides with movable metal layers outside dielectric claddings. Based on the Fabry-Pérot resonance of the dielectric cladding, multiple deep notches are observed in a broad THz transmission spectrum. Continuous shift of notch frequencies is for the first time experimentally observed by lateral translation of metal layers from dielectric claddings. The measured maximum frequency-tuning-range approached 60GHz, equaling to 50% of the bandwidth of every passband, and a 20dB rejection notch-depth with a linewidth as narrow as 6GHz at frequency of around 0.2THz was also achieved. Numerical simulations match the measurements and verify the spectral-tuning mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...