Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 937: 173309, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38782268

RESUMEN

The grass family (Poaceae) dominates ~43 % of Earth's land area and contributes 33 % of terrestrial primary productivity that is critical to naturally regulating atmosphere CO2 concentration and global climate change. Currently grasses comprise ~11,780 species and ~50 % of them (~6000 species) utilize C4 photosynthetic pathway. Generally, grass species have smaller leaves under colder and drier environments, but it is unclear whether the primary drivers of leaf size differ between C3 and C4 grasses on a global scale. Here, we analyzed 34 environmental variables, such as latitude, elevation, mean annual temperature, mean annual precipitation, and solar radiation etc., through a comparatively comprehensive database of ~3.0 million occurrence records from 1380 C3 and 978 C4 grass species (2358 species in total). Results from this study confirm that C4 grasses have occupied habitats with lower latitudes and elevations, characterized by warmer, sunnier, drier and less fertile environmental conditions. Grass leaf size correlates positively with mean annual temperature and precipitation as expected. Our results also demonstrate that the mean temperature of the wettest quarter of the year is the primary control for C3 leaf size, whereas C4 leaf size is negatively correlated with the difference between summer and winter temperatures. For C4 grasses, phylogeny exerts a significant effect on leaf size but is less important than environmental factors. Our findings highlight the importance of evolutionarily contrasting variations in leaf size between C3 and C4 grasses for shaping their geographical distribution and habitat suitability at the global scale.


Asunto(s)
Ecosistema , Hojas de la Planta , Poaceae , Poaceae/anatomía & histología , Hojas de la Planta/anatomía & histología , Fotosíntesis , Cambio Climático
2.
Mol Ecol ; 33(13): e17386, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38751195

RESUMEN

One of the key goals of ecology is to understand how communities are assembled. The species co-existence theory suggests that community ß-diversity is influenced by species pool and community assembly processes, such as environmental filtering, dispersal events, ecological drift and biotic interactions. However, it remains unclear whether there are similar ß-diversity patterns among different soil microbial groups and whether all these mechanisms play significant roles in mediating ß-diversity patterns. By conducting a broad survey across Chinese deserts, we aimed to address these questions by investing biological soil crusts (biocrusts). Through amplicon-sequencing, we acquired ß-diversity data for multiple microbial groups, that is, soil total bacteria, diazotrophs, phoD-harbouring taxa, and fungi. Our results have shown varying distance decay rates of ß-diversity across microbial groups, with soil total bacteria showing a weaker distance-decay relationship than other groups. The impact of the species pool on community ß-diversity varied across microbial groups, with soil total bacteria and diazotrophs being significantly influenced. While the contributions of specific assembly processes to community ß-diversity patterns varied among different microbial groups, significant effects of local community assembly processes on ß-diversity patterns were consistently observed across all groups. Homogenous selection and dispersal limitation emerged as crucial processes for all groups. Precipitation and soil C:P were the key factors mediating ß-diversity for all groups. This study has substantially advanced our understanding of how the communities of multiple microbial groups are structured in desert biocrust systems.


Asunto(s)
Bacterias , Biodiversidad , Clima Desértico , Microbiología del Suelo , Bacterias/genética , Bacterias/clasificación , Hongos/genética , Hongos/clasificación , China , Microbiota/genética , Suelo/química
3.
Sci Total Environ ; 921: 171078, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382615

RESUMEN

Decreased snow depth resulting from global warming has the potential to significantly impact biogeochemical cycles in cold forests. However, the specific mechanisms of how snow reduction affects litter decomposition and the underlying microbial processes remain unclear, this knowledge gap limits our ability to precisely predict ecological processes within cold forest ecosystems under climate change. Hence, a field experiment was conducted in a subalpine forest in southwestern China, involving a gradient of snow reduction levels (control, 50 %, 100 %) to investigate the effects of decreased snow on litter decomposition, as well as microbial biomass and activity, specifically focused on two common species: red birch (Betula albosinensis) and masters larch (Larix mastersiana). After one year of incubation, the decomposition rate (k-value) of the two types of litter ranged from 0.12 to 0.24 across three snow treatments. A significant lower litter mass loss, microbial biomass and enzyme activity were observed under decreased snow depth in winter. Furthermore, a hysteresis inhibitory effect of snow reduction on hydrolase activity was observed in the following growing season. Additionally, the high initial quality (lower C/N ratio) of red birch litter facilitated the colonization by a greater quantity of microorganisms, making it more susceptible to snow reduction compared to the low-quality masters larch litter. Structural equation models indicated that decreased snow depth hindered litter decomposition by altering the biological characterization of litter (e.g., microbial biomass and enzyme activity) and environmental variables (e.g., mean temperature and moisture content). The findings suggest that the potential decline in snow depth could inhibit litter decomposition by reducing microbial biomass and activity, implying that the future climate change may alter the material cycling processes in subalpine forest ecosystems.


Asunto(s)
Ecosistema , Nieve , Biomasa , Bosques , China , Hojas de la Planta/química , Suelo/química
4.
Sci Total Environ ; 898: 166383, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37598961

RESUMEN

Litter plays a crucial role in phosphorus (P) cycling, and its role in forest ecosystems may vary with different treatments and forest types. In this study, we investigated soil P fraction responses to litter removal in different forest types and how forest conversion affects the acquisition pathway of bioavailable P through an in situ controlled litter experiment. The results showed that the soil P content increased with the conversion of primary to secondary forest, which may be mostly related to the differences in nutrients and species richness between the two forest types. In addition, the main source of bioavailable P in primary forests was active organic P, while mineral P was the main bioavailable P source in secondary forests. Moreover, the three-year litter removal treatment significantly decreased the primary forest soil P fraction content while significantly increasing the secondary forest bioavailable P content. The main driving factors of the soil P fraction are also different between the two forest types, with AP activity and SOC as the major factors in the primary forest and pH as the main factor in the secondary forest.

5.
Sci Total Environ ; 881: 163416, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37059137

RESUMEN

Livestock grazing of grassland ecosystems may induce shifts in microbe community traits and soil carbon (C) cycling; however, impacts of grassland management (grazing) on soil C- microbe community trait (microbial biomass, diversity, community structure, and enzyme activity) relationships are unclear. To address this, we conducted a global meta-analysis of 95 articles of livestock grazing studies that vary in grazing intensities (light, moderate, and high) and durations (<5 years, 5-10 years, and > 10 years). We found that gazing decreased soil organic carbon content (SOC; 10.1 %), and activities of the enzymes of saccharase (SA; 31.1 %), urease (UA; 7.0 %), and acid phosphatase (11.9 %) in topsoil. Meanwhile, the SOC, soil microbial biomass and enzyme activities consistently decreased as grazing intensity and duration prolonged. Furthermore, we observed strong linear relationships of microbe community traits with SOC (p < 0.05), but weak relationships with soil N or P (p > 0.05) in grasslands, which also depends on the grazing intensity and duration. In conclusion, our results indicate that traits of soil carbon content, soil microbe community, and in particular their relationships in global grasslands are overall significantly affected by livestock grazing, but the effects strongly depend on the grazing intensity and duration.


Asunto(s)
Ecosistema , Microbiota , Animales , Pradera , Carbono , Ganado , Suelo/química , Nitrógeno/análisis
6.
New Phytol ; 240(1): 105-113, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36960541

RESUMEN

Plant flammability is an important driver of wildfires, and flammability itself is determined by several plant functional traits. While many plant traits are influenced by climatic conditions, the interaction between climatic conditions and plant flammability has rarely been investigated. Here, we explored the relationships among climatic conditions, shoot-level flammability components, and flammability-related functional traits for 186 plant species from fire-prone and nonfire-prone habitats. For species originating from nonfire-prone habitats, those from warmer areas tended to have lower shoot moisture content and larger leaves, and had higher shoot flammability with higher ignitibility, combustibility, and sustainability. Plants in wetter areas tended to have lower shoot flammability with lower combustibility and sustainability due to higher shoot moisture contents. In fire-prone habitats, shoot flammability was not significantly related to any climatic factor. Our study suggests that for species originating in nonfire-prone habitats, climatic conditions have influenced plant flammability by shifting flammability-related functional traits, including leaf size and shoot moisture content. Climate does not predict shoot flammability in species from fire-prone habitats; here, fire regimes may have an important role in shaping plant flammability. Understanding these nuances in the determinants of plant flammability is important in an increasingly fire-prone world.


Asunto(s)
Incendios , Incendios Forestales , Ecosistema , Plantas , Hojas de la Planta
7.
New Phytol ; 238(5): 1838-1848, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36891665

RESUMEN

Despite the vital role in carbon (C) sequestration and nutrient retention, variations and patterns in root C and nitrogen (N) stoichiometry of the first five root orders across woody plant species remains unclear. We compiled a dataset to explore variations and patterns of root C and N stoichiometry in the first five orders of 218 woody plant species. Across the five orders, root N concentrations were greater in deciduous, broadleaf, and arbuscular mycorrhizal species than in evergreen, coniferous species, and ectomycorrhizal association species, respectively. Contrasting trends were found for root C : N ratios. Most root branch orders showed clear latitudinal and altitudinal trends in root C and N stoichiometry. There were opposite patterns in N concentrations between latitude and altitude. Such variations were mainly driven by plant species, and climatic factors together. Our results indicate divergent C and N use strategies among plant types and convergence and divergence in the patterns of C and N stoichiometry between latitude and altitude across the first five root orders. These findings provide important data on the root economics spectrum and biogeochemical models to improve understanding and prediction of climate change effects on C and nutrient dynamics in terrestrial ecosystems.


Asunto(s)
Micorrizas , Tracheophyta , Ecosistema , Madera , Plantas , Nitrógeno , Raíces de Plantas
8.
Sci Total Environ ; 876: 162789, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36914138

RESUMEN

Soil arthropods are crucial decomposers of litter at both global and local scales, yet their functional roles in mediating microbial activity during litter decomposition remain poorly understood. Here, we conducted a two-year field experiment using litterbags to assess the effects of soil arthropods on the extracellular enzyme activities (EEAs) in two litter substrates (Abies faxoniana and Betula albosinensis) in a subalpine forest. A biocide (naphthalene) was used to permit (nonnaphthalene) or exclude (naphthalene application) the presence of soil arthropods in litterbags during decomposition. Our results showed that biocide application was effective in reducing the abundance of soil arthropods in litterbags, with the density and species richness of soil arthropods decreasing by 64.18-75.45 % and 39.19-63.30 %, respectively. Litter with soil arthropods had a greater activity of C-degrading (ß-glucosidase, cellobiohydrolase, polyphenol oxidase, peroxidase), N-degrading (N-acetyl-ß-D-glucosaminidase, leucine arylamidase) and P-degrading (phosphatase) enzymes than litter from which soil arthropods were excluded. The contributions of soil arthropods to C-, N- and P-degrading EEAs in the fir litter were 38.09 %, 15.62 % and 61.69 %, and those for the birch litter were 27.97 %, 29.18 % and 30.40 %, respectively. Furthermore, the stoichiometric analyses of enzyme activity indicated that there was potential C and P colimitation in both the soil arthropod inclusion and exclusion litterbags, and the presence of soil arthropods decreased C limitation in the two litter species. Our structural equation models suggested that soil arthropods indirectly promoted C-, N- and P-degrading EEAs by regulating the litter C content and litter stoichiometry (e.g., N/P, LN/N and C/P) during litter decomposition. These results demonstrate that soil arthropods play an important functional role in modulating EEAs during litter decomposition.


Asunto(s)
Abies , Artrópodos , Animales , Carbono , Suelo/química , Bosques , Betula , Hojas de la Planta/fisiología , Naftalenos , Microbiología del Suelo , Nitrógeno , Ecosistema
9.
Environ Sci Pollut Res Int ; 29(27): 41544-41556, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35094284

RESUMEN

Climate warming changes the plant community composition and biodiversity. Dominate species or plant functional types (PFTs) loss may influence alpine ecosystem processes, but much uncertainty remains. This study tested whether loss of specific PFTs and vegetation variation would impact the metallic element release of mixed litter in an alpine treeline ecotone. Six representative PFTs in the alpine ecosystem on the eastern Tibetan Plateau were selected. Litterbags were used to determine the release of potassium, calcium, magnesium, sodium, manganese, zinc, copper, iron, and aluminum from litter loss of specific PFTs after 669 days of decomposition in coniferous forest (CF) and alpine shrubland (AS). The results showed that potassium, sodium, magnesium, and copper were net released, while aluminum, iron, and manganese were accumulated after 669 days. Functional type mixtures promoted the release of potassium, sodium, aluminum, and zinc (synergistic effect), while inhibiting the release of calcium, magnesium, and iron (antagonistic effect). Further, loss of specific plant functional type significantly affected the aluminum and iron release rates and the relatively mixed effects of the potassium, aluminum, and iron release rates. The synergistic effects on potassium, sodium, and aluminum in AS were greater than those in CF, while the antagonistic effect of manganese release in AS was lower than that in CF. Therefore, increased altitude may further promote the synergistic effect of potassium, sodium, and aluminum release and alleviate the antagonistic effect of manganese in mixed litter. Finally, the initial stoichiometric ratios regulate the mixed effects of elemental release rates, with the nitrogen-related stoichiometric ratios playing the most important role. The regulation of elements release by stoichiometric ratios requires more in-depth and systematic studies, which will help us to understand the influence mechanism of decomposition more comprehensively.


Asunto(s)
Ecosistema , Tracheophyta , Aluminio , Calcio , Cobre , Hierro , Magnesio , Manganeso , Hojas de la Planta , Plantas , Potasio , Estaciones del Año , Sodio , Suelo , Zinc
10.
Sci Total Environ ; 803: 150122, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34525692

RESUMEN

Loss of plant diversity affects mountain ecosystem properties and processes, yet few studies have focused on the impact of plant function type deficiency on mixed litter humification. To fill this knowledge gap, we conducted a 1279-day litterbag decomposition experiment with six plant functional types of foliar litter to determine the temporal dynamic characteristics of mixed litter humification in a coniferous forest (CF) and an alpine shrubland (AS). The results indicated that the humus concentrations, the net accumulations and their relative mixed effects (RME) of most types were higher in CF than those in AS at 146 days, and humus net accumulations fell to approximately -80% of the initial level within 1279 days. The RME of the total humus and humic acid concentrations exhibited a general change from synergistic to antagonistic effects over time, but the mixing of single plant functional type impeded the formation of fulvic acid due to consistently exhibited antagonistic effects. Ultimately, correlation analysis indicated that environmental factors (temperature, snow depth and freeze-thaw cycles) significantly hindered litter humification in the early stage, while some initial quality factors drove this process at a longer scale. Among these aspects, the concentrations of zinc, copper and iron, as well as acid-unhydrolyzable residue (AUR):nitrogen and AUR:phosphorous, stimulated humus accumulation, while water-soluble extractables, potassium, magnesium and aluminium hampered it. Deficiencies in a single plant functional type and vegetation type variations affected litter humification at the alpine treeline, which will further affect soil carbon sequestration, which is of great significance for understanding the material circulation of alpine ecosystems.


Asunto(s)
Ecosistema , Hojas de la Planta , Bosques , Estaciones del Año , Nieve , Suelo
11.
Front Psychiatry ; 12: 720722, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880787

RESUMEN

Nature exposure is known to promote life satisfaction and well-being, and indirect exposure through windows is likely to benefit isolated populations. However, whether such type of exposure can benefit prisoners, the extremely isolated population, is unknown. In the current study, we investigated 326 male prisoners from three prisons in southwest China. Psychological variables including depression, anxiety, loneliness, distress tolerance, life satisfaction, and well-being were measured using the Patient Health Questionnaire-9 (PHQ-9), Generalized Anxiety Disorder Scale (GAD-7), short-form UCLA Loneliness Scale (ULS-6), Distress Tolerance Scale (DTS), Satisfaction with Life Scale (SWLS), and 5-item World Health Organization Well-Being Index (WHO-5), respectively. Structural equation modeling was employed to identify the pathways from the visibility of nature through windows to prisoners' life satisfaction and well-being. Our results demonstrated that visibility of nature promoted the frequency and duration of viewing nature through windows. The frequency directly affected well-being, but the duration did not effectively affect any measured variables. The visibility of nature enhanced life satisfaction mainly via direct effects but enhanced well-being mainly via indirect effects. Regarding the indirect pathways, the visibility of nature increased distress tolerance and thus reduced loneliness and mental health problems. The reduced mental health problem, in turn, promoted life satisfaction and well-being. Our findings suggest that nature exposure through windows is effective in enhancing prisoners' life satisfaction and well-being. The policymaker may need to consider nature-based solutions such as indirect nature exposure in prions to benefit isolated populations.

12.
Ecol Evol ; 11(21): 15020-15029, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34765157

RESUMEN

Previous studies have demonstrated changes in plant growth and reproduction in response to nutrient availability, but responses of plant growth and reproduction to multiple levels of nutrient enrichment remain unclear. In this study, a factorial field experiment was performed with manipulation of nitrogen (N) and phosphorus (P) availability to examine seed production of the dominant species, Stipa krylovii, in response to N and P addition in a temperate steppe. There were three levels of N and P addition in this experiment, including no N addition (0 g N m-2 year-1), low N addition (10 g N m-2 year-1), and high N addition (40 g N m-2 year-1) for N addition treatment, and no P addition (0 g P m-2 year-1), low P addition (5 g P m-2 year-1), and high P addition (10 g P m-2 year-1) for P addition treatment. Low N addition enhanced seed production by 814%, 1371%, and 1321% under ambient, low, and high P addition levels, respectively. High N addition increased seed production by 2136%, 3560%, and 3550% under ambient, low, and high P addition levels, respectively. However, P addition did not affect seed production in the absence of N addition, but enhanced it under N addition. N addition enhanced seed production mainly by increasing the tiller number and inflorescence abundance per plant, whereas P addition stimulated it by decreasing the plant density yet stimulating height of plants and their seed number per inflorescence. Our results indicate seed production is not limited by P availability but rather by N availability in the temperate steppe, whereas seed production will be increased by P addition when N availability is improved. These findings enable a better understanding of plant reproduction dynamics in the temperate steppe under intensified nutrient enrichment and can inform their improved management in the future.

13.
Sci Total Environ ; 753: 142287, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33207458

RESUMEN

The decomposition of litter carbon (C) fraction is a major determinant of soil organic matter pool and nutrient cycling. However, knowledge of litter chemical traits regulate C fractions release is still relatively limited. A litterbag experiment was conducted using six plant functional litter types at two vegetation type (coniferous forest and alpine shrubland) in a treeline ecotone. We evaluated the relative importance of litter chemistry (i.e. Nutrient, C quality, and stoichiometry) on the loss of litter mass, non-polar extractables (NPE), water-soluble extractables (WSE), acid-hydrolyzable carbohydrates (ACID), and acid-unhydrolyzable residue (AUR) during decomposition. Litter nutrients contain nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), magnesium (Mg), aluminium (Al), manganese (Mn), zinc (Zn), iron (Fe) and copper (Cu), litter C quality contains C, WSE, NPE, ACID, and AUR, and stoichiometry was defined by C:N, C:P; N:P, ACID:N, and AUR:N. The results showed single exponential model fitted decomposition rates of litter mass and C fractions better than double exponential or asymptotic decomposition, and the decomposition rates of C fractions were strongly correlated with initial litter nutrients, especially K, Na, Ca. Furthermore, the temporal dynamics of litter nutrients (Ca, Mg, Na, K, Zn, and Fe) strongly regulated C fractions loss during the decomposition process. Changes in litter C quality had an evident effect on the degradation of ACID and AUR, supporting the concept of "priming effect" of soluble carbon fraction. The significant differences were found in the release of NPE, WSE, and ACID rather than AUR among coniferous forest and alpine shrubland, and the vegetation type effects largely depend on the changes in litter stoichiometry, which is an important implication for the change in plant community abundance regulate decay. Collectively, elucidating the hierarchical drivers of litter chemistry on decomposition is critical to soil C sequestration in alpine ecosystems.

14.
Sci Total Environ ; 761: 143211, 2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33172642

RESUMEN

Soil respiration is one of the largest carbon (C) sources in terrestrial ecosystems and is sensitive to soil nutrient variation. Although nitrogen (N) availability affects soil respiration, other nutrients, such as phosphorous (P), which play pivotal roles in plant growth and microbial activity, may also affect soil respiration. In addition, N and P have been widely reported to interactively affect plant growth; however, their interactive effects on soil respiration have rarely been studied. Therefore, we conducted a short-term, two-factor experiment (from 2013 to 2015) to determine whether N and P addition can interactively affect soil respiration in a northern Chinese steppe. Nitrogen addition elevated soil respiration by 9.5%, whereas P addition did not affect soil respiration in the studied steppe across all treatments. However, neither N nor P addition significantly affected soil respiration alone in the experiment. Furthermore, N and P interactively affected soil respiration. Nitrogen addition did not affect soil respiration in the ambient P plots, but significantly elevated soil respiration (by 17.7%) in P addition plots across the three growing seasons. The effects of N addition on soil respiration were primarily correlated with the responses of vegetation cover and litter biomass to N addition in the experiment. Our results demonstrate that P addition augments the effects of N addition on soil respiration. Soil nutrient contents should be incorporated into predictive models for terrestrial C cycle response to N addition.

15.
Sci Total Environ ; 747: 141298, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-32791413

RESUMEN

Mixed litter decomposition is a common phenomenon in nature and is very important for the circulation of material through an ecosystem. Different plant functional groups (PFGs) are likely to interact during decomposition. It is unclear how mixed decomposition influences the release of multiple metallic elements, and the biogeochemical circulation mechanism in the alpine ecosystem remains elusive. In this study, a two-year experiment on decomposition of mixed litter from six dominant PFGs was conducted at two elevations in an alpine timberline ecotone using the litterbag method. First, the results suggested that PFG identity had greater impacts on the release of all metallic elements than elevation. The release rates of potassium (K), calcium (Ca), magnesium (Mg) and copper (Cu) in graminoid, deciduous shrub and forb litter were significantly higher than those in evergreen conifer, evergreen shrub and mixed litter. Second, the release of metallic elements showed non-additive effects during mixed litter decomposition. K, Ca, Mg, sodium (Na), Cu, and aluminium (Al) exhibited antagonistic effects, while Fe exhibited a synergistic effect. The antagonistic effects on Na, K, Ca and Cu release increased with increasing elevation, while the antagonistic effects on Mg, Al and Mn release decreased with increasing elevation. Third, Al and Fe showed high levels of accumulation. The K release rate decreased while Al and Fe accumulation increased with plant litter upward shift. In conclusion, mixtures of PFGs inhibits the release of multiple metallic elements during litter decomposition in the alpine timberline ecotone. We speculate that an upward shift in PFGs in response to climate warming will slow the release of K and accelerate the enrichment of Fe and Al in alpine timberline ecotones.


Asunto(s)
Ecosistema , Suelo , Clima , Hojas de la Planta , Plantas
16.
Sci Total Environ ; 741: 140454, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32610243

RESUMEN

Winter snow cover is a major driver of soil microbial processes in high-latitude and high-altitude ecosystems. Warming-induced reduction in snow cover as predicted under future climate scenarios may shift soil bacterial communities with consequences for soil carbon and nutrient cycling. The underlying mechanisms, however, remain elusive. In the present study, we conducted a snow manipulation experiment in a Tibetan spruce forest to explore the immediate and intra-annual legacy effects of snow exclusion on soil bacterial communities. We analyzed bacterial diversity and community composition in the winter (i.e., the deep snow season), in the transitional thawing period, and in the middle of the growing season. Proteobacteria, Acidobacteria, and Actinobacteria were dominant phyla across the seasons and snow regimes. Bacterial diversity was generally not particularly sensitive to the absence of snow cover. However, snow exclusion positively affected Simpson diversity in the winter but not in the thawing period and the growing season. Bacterial diversity further tended to be higher in winter than in the growing season. In the winter, the taxonomic composition shifted in response to snow exclusion, while composition did not differ between exclusion and control plots in the thawing period and the growing season. Soil bacterial communities strongly varied across seasons, and the variations differed in specific groups. Both soil climatic factors (i.e., temperature and moisture) and soil biochemical variables partly accounted for the seasonal dynamics of bacterial communities. Taken together, our study indicates that soil bacterial communities in Tibetan forests are rather resilient to change in snow cover, at least at an intra-annual scale.


Asunto(s)
Nieve , Suelo , Ecosistema , Bosques , Estaciones del Año
17.
Glob Chang Biol ; 26(6): 3585-3600, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32146723

RESUMEN

A mechanistic understanding of plant photosynthetic response is needed to reliably predict changes in terrestrial carbon (C) gain under conditions of chronically elevated atmospheric nitrogen (N) deposition. Here, using 2,683 observations from 240 journal articles, we conducted a global meta-analysis to reveal effects of N addition on 14 photosynthesis-related traits and affecting moderators. We found that across 320 terrestrial plant species, leaf N was enhanced comparably on mass basis (Nmass , +18.4%) and area basis (Narea , +14.3%), with no changes in specific leaf area or leaf mass per area. Total leaf area (TLA) was increased significantly, as indicated by the increases in total leaf biomass (+46.5%), leaf area per plant (+29.7%), and leaf area index (LAI, +24.4%). To a lesser extent than for TLA, N addition significantly enhanced leaf photosynthetic rate per area (Aarea , +12.6%), stomatal conductance (gs , +7.5%), and transpiration rate (E, +10.5%). The responses of Aarea were positively related with that of gs , with no changes in instantaneous water-use efficiency and only slight increases in long-term water-use efficiency (+2.5%) inferred from 13 C composition. The responses of traits depended on biological, experimental, and environmental moderators. As experimental duration and N load increased, the responses of LAI and Aarea diminished while that of E increased significantly. The observed patterns of increases in both TLA and E indicate that N deposition will increase the amount of water used by plants. Taken together, N deposition will enhance gross photosynthetic C gain of the terrestrial plants while increasing their water loss to the atmosphere, but the effects on C gain might diminish over time and that on plant water use would be amplified if N deposition persists.


Asunto(s)
Nitrógeno , Fotosíntesis , Hojas de la Planta , Transpiración de Plantas , Plantas , Agua
18.
PLoS One ; 14(5): e0217178, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31107923

RESUMEN

Naphthalene has been widely used to test the functional roles of soil fauna, but its nontarget effects remain uncertain in various soils. To determine whether there is a potential nontarget effect on soil biochemical properties in subalpine forest soil, soils in a subalpine forest on the western Qinghai-Tibet Plateau were treated by naphthalene in microcosms. The responses of soil microbial activity and nutrients to naphthalene were studied following 52 days of incubation. The results showed that the naphthalene application obviously decreased the microbial respiration rate in the first 10 days of the incubation and then increased the rate in the following days of the incubation. Moreover, the naphthalene application did not significantly affect the microbial activities overall, measured as soil microbial phospholipid fatty acid (PLFA) abundances and biomasses, or most enzyme activities (invertase, nitrate reductase and nitrite reductase) during the whole incubation period. However, naphthalene suppressed increases in the DON, NH4+-N and NO3--N contents and urease activity and led to the net mineralization of inorganic N (NH4+-N + NO3--N), in contrast to the net immobilization result in the controls. These results suggest that naphthalene can exert direct nontarget effects on soil microbial respiration and N mineralization processes in subalpine soils. Caution should be taken when using naphthalene to repel soil animals in field experiments.


Asunto(s)
Naftalenos/farmacología , Nitrógeno/metabolismo , Fósforo/metabolismo , Microbiología del Suelo , Suelo/química , Bosques
19.
Sci Rep ; 8(1): 17525, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30510214

RESUMEN

Despite the importance of nitrogen (N) deposition for soil biogeochemical cycle, how N addition affects the accumulation of humic substances in decomposing litter still remains poorly understood. A litterbag experiment was conducted to assess the potential effects of N addition (0 kg·N·ha-1·year-1, 20 kg·N·ha-1·year-1 and 40 kg·N·ha-1·year-1) on mass remaining and humification of two leaf litter (Michelia wilsonii and Camptotheca acuminata) in a subtropical forest of southwestern China. After one year of decomposition, litter mass was lost by 38.1-46.5% for M. wilsonii and 61.7-74.5% for C. acuminata, respectively. Humic substances were declined by 12.1-23.8% in M. wilsonii and 29.1-35.5% in C. acuminata, respectively. Nitrogen additions tended to reduce mass loss over the experimental period. Moreover, N additions did not affect the concentrations of humic substances and humic acid in the early stage but often increased them in the late stage. The effect of N addition on the accumulation of humic substances was stronger for C. acuminate litter than in M. wilsonii litter. Litter N and P contents showed positive correlations with concentrations of humic substances and fulvic acid. Our results suggest that both litter quality and season-driven environmental changes interactively mediate N impacts on litter humification. Such findings have important implications for carbon sequestration via litter humification in the subtropical forest ecosystems experiencing significant N deposition.

20.
Sci Total Environ ; 645: 733-742, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30031331

RESUMEN

Nutrient resorption from senescing leaves is an important process of internal nutrient cycling in plants, but the patterns of nutrient resorption and the coupled relationship between nitrogen (N) and phosphorus (P) in plant leaves as affected by N deposition remain unclear. We analysed the effects of N addition on the nutrient resorption and coupled relationship between N and P in plant leaves under different nutrient-limited conditions based on a global meta-analysis. Globally, the mean N resorption efficiency (NRE) and P resorption efficiency (PRE) under natural conditions were 47.4% and 53.6%, respectively, which were significantly regulated by geographical and climatic factors as well as plant characteristics. Furthermore, N addition significantly decreased the NRE by 13.3% but slightly affected the PRE on a global scale, and N addition rates and latitude directly and negatively affected the effects of N addition on NRE. Specifically, N addition significantly decreased the NRE under all nutrient-limited conditions, while it had negative, positive, and neutral effects on the PRE under N-limited, P-limited, and N and P-co-limited conditions, respectively. Moreover, the relationships between N and P in green and senesced leaves were tightly coupled under different nutrient-limited conditions in natural ecosystems. However, N addition significantly weakened the relationships between N and P concentrations in green leaves but slightly affected the relationship in senesced leaves, which were mainly modulated by the effects of N addition on nutrient resorption efficiency, especially NRE. These results highlight that nutrient-limited conditions determine the response of nutrient resorption to N deposition and emphasize the effect of nutrient resorption regulation on the coupling of N and P responses to N enrichment. The findings are important for understanding plant nutrient use strategies and the mechanisms underlying the stoichiometric coupling of N and P in response to climate change, and can be used in global biogeochemical models.


Asunto(s)
Nitrógeno/análisis , Fósforo/análisis , Hojas de la Planta/fisiología , Ecosistema , Nitrógeno/metabolismo , Fósforo/metabolismo , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...