RESUMEN
Citrus reticulata 'Chachi' (CRC) has long been recognized for its nutritional benefits, health-promoting properties, and pharmacological potential. Despite its importance, the bioactive components of CRC and their biosynthetic pathways have remained largely unexplored. In this study, we introduce a gap-free genome assembly for CRC, which has a size of 312.97 Mb and a contig N50 size of 32.18 Mb. We identified key structural genes, transcription factors, and metabolites crucial to flavonoid biosynthesis through genomic, transcriptomic, and metabolomic analyses. Our analyses reveal that 409 flavonoid metabolites, accounting for 83.30% of the total identified, are highly concentrated in the early stage of fruit development. This concentration decreases as the fruit develops, with a notable decline in compounds such as hesperetin, naringin, and most polymethoxyflavones observed in later fruit development stages. Additionally, we have examined the expression of 21 structural genes within the flavonoid biosynthetic pathway, and found a significant reduction in the expression levels of key genes including 4CL, CHS, CHI, FLS, F3H, and 4'OMT during fruit development, aligning with the trend of flavonoid metabolite accumulation. In conclusion, this study offers deep insights into the genomic evolution, biosynthesis processes, and the nutritional and medicinal properties of CRC, which lay a solid foundation for further gene function studies and germplasm improvement in citrus.
RESUMEN
The number of studies on plant transcriptomes using ONT RNAseq technology is rapidly increasing in recent. It is a powerful method to decipher transcriptomic complexity, particularly alternative splicing (AS) event detection. Citrus plants are the most important widely grown fruit crops. Exploring different AS events in citrus contributes to transcriptome improvement and functional genome study. Here, we performed ONT RNAseq in 9 species (Atalantia buxifolia, Citrus clementina, C. grandis, C. ichangensis, C. reticulata, C. sinensis, Clausena lansium, Fortunella hindsii, and Poncirus trifoliata), accompanied with Illumina sequencing. Non-redundant full-length isoforms were identified between 41,957 and 76,974 per species. Systematic analysis including different types of isoforms, number of isoforms per gene locus, isoform distribution, ORFs and lncRNA prediction and functional annotation were performed mainly focused on novel isoforms, unraveling the capability of novel isoforms detection and characterization. For AS events prediction, A3, RI, and AF were overwhelming types across 9 species. We analyzed isoform similarity and evolutionary relationships in all species. We identified that multiple isoforms derived from orthologous single copy genes among different species were annotated as enzymes, nuclear-related proteins or receptors. Isoforms with extending sequences on 5', 3', or both compared with reference genome were filtered out to provide information for transcriptome improvement. Our results provide novel insight into comprehending complex transcriptomes in citrus and valuable information for further investigation on the function of genes with diverse isoforms.