Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Biol (Weinh) ; 8(1): e2300233, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37670402

RESUMEN

Extracellular vesicles (EVs) are highly sought after as a source of biomarkers for disease detection and monitoring. Tumor EV isolation, processing, and evaluation from biofluids is convoluted by EV heterogeneity and biological contaminants and is limited by technical processing efficacy. This study rigorously compares common bulk EV isolation workflows (size exclusion chromatography, SEC; membrane affinity, MA) alongside downstream RNA extraction protocols to investigate molecular analyte recovery. EV integrity and recovery is evaluated using a variety of technologies to quantify total intact EVs, total and surface proteins, and RNA purity and recovery. A comprehensive evaluation of each analyte is performed, with a specific emphasis on maintaining user (n = 2), biological (n = 3), and technical replicates (n≥3) under in vitro conditions. Subsequent study of tumor EV spike-in into healthy donor plasma samples is performed to further validate biofluid-derived EV purity and isolation for clinical application. Results show that EV surface integrity is considerably preserved in eluates from SEC-derived EVs, but RNA recovery and purity, as well as bulk protein isolation, is significantly improved in MA-isolated EVs. This study concludes that EV isolation and RNA extraction pipelines govern recovered analyte integrity, necessitating careful selection of processing modality to enhance recovery of the analyte of interest.


Asunto(s)
Vesículas Extracelulares , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Cromatografía en Gel , ARN/análisis , ARN/metabolismo , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo
2.
Cell Rep Med ; 4(10): 101198, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37716353

RESUMEN

The emerging field of liquid biopsy stands at the forefront of novel diagnostic strategies for cancer and other diseases. Liquid biopsy allows minimally invasive molecular characterization of cancers for diagnosis, patient stratification to therapy, and longitudinal monitoring. Liquid biopsy strategies include detection and monitoring of circulating tumor cells, cell-free DNA, and extracellular vesicles. In this review, we address the current understanding and the role of existing liquid-biopsy-based modalities in cancer diagnostics and monitoring. We specifically focus on the technical and clinical challenges associated with liquid biopsy and biomarker development being addressed by the Liquid Biopsy Consortium, established through the National Cancer Institute. The Liquid Biopsy Consortium has developed new methods/assays and validated existing methods/technologies to capture and characterize tumor-derived circulating cargo, as well as addressed existing challenges and provided recommendations for advancing biomarker assays.


Asunto(s)
Ácidos Nucleicos Libres de Células , Vesículas Extracelulares , Células Neoplásicas Circulantes , Humanos , Biopsia Líquida , Ácidos Nucleicos Libres de Células/genética , Biomarcadores , Células Neoplásicas Circulantes/patología
3.
Cancers (Basel) ; 15(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37568734

RESUMEN

Over the last 20 years, gliomas have made up over 89% of malignant CNS tumor cases in the American population (NIH SEER). Within this, glioblastoma is the most common subtype, comprising 57% of all glioma cases. Being highly aggressive, this deadly disease is known for its high genetic and phenotypic heterogeneity, rendering a complicated disease course. The current standard of care consists of maximally safe tumor resection concurrent with chemoradiotherapy. However, despite advances in technology and therapeutic modalities, rates of disease recurrence are still high and survivability remains low. Given the delicate nature of the tumor location, remaining margins following resection often initiate disease recurrence. Photodynamic therapy (PDT) is a therapeutic modality that, following the administration of a non-toxic photosensitizer, induces tumor-specific anti-cancer effects after localized, wavelength-specific illumination. Its effect against malignant glioma has been studied extensively over the last 30 years, in pre-clinical and clinical trials. Here, we provide a comprehensive review of the three generations of photosensitizers alongside their mechanisms of action, limitations, and future directions.

4.
ACS Nano ; 17(11): 10065-10077, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37184643

RESUMEN

Of the existing immunotherapy drugs in oncology, monoclonal antibodies targeting the immune checkpoint axis are preferred because of the durable responses observed in selected patients. However, the associated immune-related adverse events (irAEs), causing uncommon fatal events, often require specialized management and medication discontinuation. The study aim was to investigate our hypothesis that masking checkpoint antibodies with tumor microenvironment (TME)-responsive polymer chains can mitigate irAEs and selectively target tumors by limiting systemic exposure to patients. We devised a broadly applicable strategy that functionalizes immune checkpoint-blocking antibodies with a mildly acidic pH-cleavable poly(ethylene glycol) (PEG) shell to prevent inflammatory side effects in normal tissues. Conjugation of pH-sensitive PEG to anti-CD47 antibodies (αCD47) minimized antibody-cell interactions by inhibiting their binding ability and functionality at physiological pH, leading to prevention of αCD47-induced anemia in tumor-bearing mice. When conjugated to anti-CTLA-4 and anti-PD-1 antibodies, double checkpoint blockade-induced colitis was also ameliorated. Notably, removal of the protective shell in response to an acidic TME restored the checkpoint antibody activities, accompanied by effective tumor regression and long-term survival in the mouse model. Our results support a feasible strategy for antibody-based therapies to uncouple toxicity from efficacy and show the translational potential for cancer immunotherapy.


Asunto(s)
Neoplasias , Animales , Ratones , Neoplasias/terapia , Anticuerpos Monoclonales/efectos adversos , Inmunoterapia/métodos , Modelos Animales de Enfermedad , Microambiente Tumoral
5.
Theranostics ; 12(17): 7465-7475, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438485

RESUMEN

Background: Despite remarkable advances in sonodynamic therapy (SDT) of cancer, the low reactive oxygen species (ROS) quantum yield of the sonosensitizer remains a critical concern in glutathione (GSH)-overexpressing cancer cells. Methods: For enhanced SDT, we report hydrophilized self-immolative polymer (SIP)-decorated TiO2 nanoparticles (HSIPT-NPs) to achieve on-demand GSH depletion and ROS generation. Results: Upon intracellular delivery of HSIPT-NPs into hydrogen peroxide-rich cancer cells, SIP is degraded through electron transfer to produce GSH-depleting quinone methide, reprogramming GSH high cancer cells into GSH low phenotype. In the presence of ultrasound, compared to conventional TiO2 NPs, HSIPT-NPs induce significantly higher oxidative stress to cancer cells by incapacitating their antioxidant effects. SDT with HSIPT-NPs effectively inhibit tumor growth in mice via the synergistic effects of GSH depletion and ROS generation. Conclusion: On the basis of their ability to reprogram cancer cells, HSIPT-NPs offer considerable potential as a nanosensitizer for enhanced SDT.


Asunto(s)
Nanopartículas , Neoplasias , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Glutatión/metabolismo , Antioxidantes/farmacología
6.
J Extracell Vesicles ; 11(11): e12278, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36404434

RESUMEN

Liquid biopsy is a minimally invasive alternative to surgical biopsy, encompassing different analytes including extracellular vesicles (EVs), circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), proteins, and metabolites. EVs are released by virtually all cells, but at a higher rate by faster cycling, malignant cells. They encapsulate cargo native to the originating cell and can thus provide a window into the tumour landscape. EVs are often analysed in bulk which hinders the analysis of rare, tumour-specific EV subpopulations from the large host EV background. Here, we fractionated EV subpopulations in vitro and in vivo and characterized their phenotype and generic cargo. We used 5-aminolevulinic acid (5-ALA) to induce release of endogenously fluorescent tumour-specific EVs (EVPpIX ). Analysis of five different subpopulations (EVPpIX , EVCD63 , EVCD9 , EVEGFR , EVCFDA ) from glioblastoma (GBM) cell lines revealed unique transcriptome profiles, with the EVPpIX transcriptome demonstrating closer alignment to tumorigenic processes over the other subpopulations. Similarly, isolation of tumour-specific EVs from GBM patient plasma showed enrichment in GBM-associated genes, when compared to bulk EVs from plasma. We propose that fractionation of EV populations facilitates detection and isolation of tumour-specific EVs for disease monitoring.


Asunto(s)
Vesículas Extracelulares , Glioblastoma , Ácido Aminolevulínico/metabolismo , Vesículas Extracelulares/metabolismo , Glioblastoma/diagnóstico , Humanos
7.
Neurooncol Adv ; 4(Suppl 2): ii53-ii60, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36380860

RESUMEN

Extracellular vesicles (EVs) represent a valuable tool in liquid biopsy with tremendous clinical potential in diagnosis, prognosis, and therapeutic monitoring of gliomas. Compared to tissue biopsy, EV-based liquid biopsy is a low-cost, minimally invasive method that can provide information on tumor dynamics before, during, and after treatment. Tumor-derived EVs circulating in biofluids carry a complex cargo of molecular biomarkers, including DNA, RNA, and proteins, which can be indicative of tumor growth and progression. Here, we briefly review current commercial and noncommercial methods for the isolation, quantification, and biochemical characterization of plasma EVs from patients with glioma, touching on whole EV analysis, mutation detection techniques, and genomic and proteomic profiling. We review notable advantages and disadvantages of plasma EV isolation and analytical methods, and we conclude with a discussion on clinical translational opportunities and key challenges associated with the future implementation of EV-based liquid biopsy for glioma treatment.

8.
Biomaterials ; 283: 121466, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35286853

RESUMEN

Sonodynamic therapy (SDT) has recently emerged as a promising alternative to photodynamic therapy because of its applicability in treating deeply located tumors accessible by ultrasound (US). However, the therapeutic potential of conventional sonosensitizers is limited by the low quantum yield of reactive oxygen species (ROS) and poor immune responses eliciting canonical apoptosis of cancer cells. Herein, we report chemiluminescence resonance energy transfer (CRET)-based immunostimulatory nanoparticles (iCRET NPs) for sonoimmunotherapy, which not only amplify the ROS quantum yield of sonosensitizers but also generate carbon dioxide (CO2) bubbles to induce immunogenic cell death in the tumor microenvironment (TME). Owing to their CRET phenomena responsive to H2O2 in the TME, iCRET NPs exhibit strong cytotoxicity to cancer cells by producing a large quantity of ROS. Additionally, iCRET NPs effectively induce CO2-mediated immunogenic cell death by rupturing the cancer cell membrane in the presence of US, leading to the release of bare damage-associated molecular patterns, such as HSP 70 and HMGB1. Consequently, when iCRET NPs are combined with anti-PD-1 antibodies, iCRET NPs exhibit synergistic effects in 4T1 tumor-bearing mice, in which antitumor immunity is remarkably amplified to inhibit tumor growth and metastasis.


Asunto(s)
Nanopartículas , Terapia por Ultrasonido , Animales , Línea Celular Tumoral , Transferencia de Energía , Peróxido de Hidrógeno , Luminiscencia , Ratones , Especies Reactivas de Oxígeno/metabolismo
9.
ACS Nano ; 16(1): 251-260, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34957822

RESUMEN

Hyaluronic acid-based hydrogels (Hyal-Gels) have the potential to reduce wrinkles by physically volumizing the skin. However, they have limited ability to stimulate collagen generation, thus warranting repeated treatments to maintain their volumizing effect. In this study, stem cell-derived extracellular vesicle (EV)-bearing Hyal-Gels (EVHyal-Gels) were prepared as a potential dermal filler, ameliorating the dermis microenvironment. No significant differences were observed in rheological properties and injection force between Hyal-Gels and EVHyal-Gels. When locally administered to mouse skin, Hyal-Gels significantly extended the biological half-life of EVs from 1.37 d to 3.75 d. In the dermis region, EVHyal-Gels induced the overexpression of CD301b on macrophages, resulting in enhanced proliferation of fibroblasts. It was found that miRNAs, such as let-7b-5p and miR-24-3p, were significantly involved in the change of macrophages toward the CD301bhi phenotype. The area of the collagen layer in EVHyal-Gel-treated dermis was 2.4-fold higher than that in Hyal-Gel-treated dermis 4 weeks after a single treatment, and the collagen generated by EVHyal-Gels was maintained for 24 weeks in the dermis. Overall, EVHyal-Gels have the potential as an antiaging dermal filler for reprogramming the dermis microenvironment.


Asunto(s)
Rellenos Dérmicos , Vesículas Extracelulares , Ratones , Animales , Rellenos Dérmicos/farmacología , Dermis , Ácido Hialurónico/farmacología , Fibroblastos , Colágeno/farmacología , Hidrogeles/farmacología , Células Madre , Macrófagos
10.
Int J Biol Macromol ; 193(Pt A): 553-561, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34673105

RESUMEN

The temporal and quantitative control of the cargo release is a challenging issue in the application of hydrogels for cancer therapy. Here, we report hyaluronic acid hydrogel-based depot that provides ultrasound-triggered thermal elevation and on-demand cargo release. The hyaluronic acid hydrogel was developed by employing the gold cluster as a sonothermal crosslinker which was grown on the cargo to prevent its undesired leakage until ultrasound-induced dissociation. The results demonstrated that, in the presence of ultrasound at 30 W, the hyaluronic acid hydrogel significantly increased the temperature to 53.7 °C, leading to dissociation of gold clusters and subsequent cargo release. In addition, the prepared hydrogel exhibited appropriate mechanical properties and superior biostability as an injectable hydrogel for in vivo applications.


Asunto(s)
Liberación de Fármacos , Oro/química , Ácido Hialurónico/química , Hidrogeles/química , Animales , Oro/farmacología , Ácido Hialurónico/farmacología , Hidrogeles/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Reología , Temperatura , Ondas Ultrasónicas
11.
Int J Biol Macromol ; 192: 1231-1239, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34626726

RESUMEN

Anti-death receptor 5 (DR5) antibody is a potential therapeutic agent for liver fibrosis because it exhibits anti-fibrotic effects by inducing the apoptosis of activated hepatic stellate cells (HSCs), which are responsible for hepatic fibrogenesis. However, the clinical applications of anti-DR5 antibodies have been limited by their low agonistic activity against DR5. In this study, an anti-DR5 antibody-curcumin conjugate (DCC) was prepared to investigate its effect on the clearance of activated HSCs. The DCC was synthesized through a coupling reaction between a maleimide-functionalized curcumin derivative and a thiolated anti-DR5 antibody. No significant differences were observed in the uptake behaviors of activated HSCs between the bare anti-DR5 antibodies and DCC. Owing to the antioxidant and anti-inflammatory effects of curcumin, DCC-treated HSCs produced much lower levels of reactive oxygen species and inducible nitric oxide synthase than the bare anti-DR5 antibody-treated HSCs. Additionally, the anti-fibrotic effects of DCC on activated HSCs were more prominent than those of the bare anti-DR5 antibodies, as demonstrated by the immunocytochemical analysis of α-smooth muscle actin. DCC preferentially accumulated in the liver after its systemic administration to mice with liver fibrosis. Thus, DCC may serve as a potential therapeutic agent for treating liver fibrosis.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Curcumina/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Inmunoconjugados/farmacología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Química Sintética , Células Estrelladas Hepáticas/metabolismo , Inmunoconjugados/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Especies Reactivas de Oxígeno/metabolismo , Distribución Tisular
12.
Carbohydr Polym ; 273: 118488, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34560935

RESUMEN

Glutathione (GSH), a tripeptide abundant in the cancer cells, inhibits the cytotoxic effect of reactive oxygen species (ROS) and is associated with anti-apoptosis, thus facilitating tumor growth. Here, we report GSH-depleting carboxymethyl dextran nanocomposites for chemo-sonodynamic therapy for cancer. The nanocomposite is composed of the TiO2-based core as the sonosensitizer, MnO2 coat as the GSH-consuming chemosensitizer, and carboxymethyl dextran as the hydrophilic shell. The in vitro cell experiments demonstrated that, when taken up by the cancer cells, the nanocomposites can deplete intracellular GSH by reducing MnO2 to Mn2+ which induces intracellular ROS production. Upon exposure to ultrasound, the nanocomposites effectively generated cytotoxic singlet oxygen at the intracellular level, remarkably enhancing the cytotoxicity to cancer cells. Notably, chemo-sonodynamic activity of the nanocomposites induced apoptosis as well as necrosis of cancer cells, implying their high potential as the anticancer therapeutics.


Asunto(s)
Antineoplásicos/farmacología , Dextranos/química , Dextranos/farmacología , Nanocompuestos/química , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Glutatión/metabolismo , Compuestos de Manganeso/farmacología , Ratones , Necrosis/metabolismo , Neoplasias/metabolismo , Óxidos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Titanio/farmacología
13.
J Control Release ; 336: 285-295, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34174353

RESUMEN

Allogeneic transplantation of mesenchymal stem cell-derived extracellular vesicles (EVs) offers great potential for treating liver fibrosis. However, owing to their intrinsic surface characteristics, bare EVs are non-specifically distributed in the liver tissue after systemic administration, leading to limited therapeutic efficacy. To target activated hepatic stellate cells (HSCs), which are responsible for hepatic fibrogenesis, vitamin A-coupled small EVs (V-EVs) were prepared by incorporating vitamin A derivative into the membrane of bare EVs. No significant differences were found in the particle size and morphology between bare and V-EVs. In addition, surface engineering of EVs did not affect the expression of surface marker proteins (e.g., CD63 and CD9), as demonstrated by flow cytometry. Owing to the surface incorporation of vitamin A, V-EVs were selectively taken up by activated HSCs via receptor-mediated endocytosis. When systemically administered to mice with liver fibrosis, V-EVs effectively targeted activated HSCs in the liver tissue, resulting in reversal of the fibrotic cascade. Consequently, even at a 10-fold lower dose, V-EVs exhibited comparable anti-fibrotic effects to those of bare EVs, substantiating their therapeutic potential for liver fibrosis.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Animales , Células Estrelladas Hepáticas , Cirrosis Hepática/tratamiento farmacológico , Ratones , Vitamina A
14.
Sci Adv ; 7(23)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34078596

RESUMEN

Despite the remarkable advances in therapeutics for rheumatoid arthritis (RA), a large number of patients still lack effective countermeasures. Recently, the reprogramming of macrophages to an immunoregulatory phenotype has emerged as a promising therapeutic strategy for RA. Here, we report metabolically engineered exosomes that have been surface-modified for the targeted reprogramming of macrophages. Qualified exosomes were readily harvested from metabolically engineered stem cells by tangential flow filtration at a high yield while maintaining their innate immunomodulatory components. When systemically administered into mice with collagen-induced arthritis, these exosomes effectively accumulated in the inflamed joints, inducing a cascade of anti-inflammatory events via macrophage phenotype regulation. The level of therapeutic efficacy obtained with bare exosomes was achievable with the engineered exosomes of 10 times less dose. On the basis of the boosted nature to reprogram the synovial microenvironment, the engineered exosomes display considerable potential to be developed as a next-generation drug for RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Exosomas , Animales , Artritis Experimental/terapia , Artritis Reumatoide/tratamiento farmacológico , Humanos , Macrófagos , Ratones , Células Madre
15.
J Extracell Vesicles ; 10(5): e12077, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33738083

RESUMEN

Extracellular vesicles (EVs) are essential mediators in intercellular communication that have emerged as natural therapeutic nanomedicines for the treatment of intractable diseases. Their therapeutic applications, however, have been limited by unpredictable in vivo biodistribution after systemic administration. To control the in vivo fate of EVs, their surfaces should be properly edited, depending on the target site of action. Herein, based on bioorthogonal copper-free click chemistry (BCC), surface-edited EVs were prepared by using metabolically glycoengineered cells. First, the exogenous azide group was generated on the cellular surface through metabolic glycoengineering (MGE) using the precursor. Next, PEGylated hyaluronic acid, capable of binding specifically to the CD44-expressing cells, was labelled as the representative targeting moiety onto the cell surface by BCC. The surface-edited EVs effectively accumulated into the target tissues of the animal models with rheumatoid arthritis and tumour, primarily owing to prolonged circulation in the bloodstream and the active targeting mechanism. Overall, these results suggest that BCC combined with MGE is highly useful as a simple and safe approach for the surface modification of EVs to modulate their in vivo fate.


Asunto(s)
Vesículas Extracelulares/metabolismo , Receptores de Hialuranos/metabolismo , Inflamación/terapia , Animales , Ingeniería Celular , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Masculino , Ratones , Ratones Endogámicos DBA , Células 3T3 NIH , Células RAW 264.7
16.
Chem Commun (Camb) ; 57(23): 2854-2866, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33625416

RESUMEN

With interest in non-invasiveness and safety in cancer treatment, sonodynamic therapy (SDT) has emerged as a promising alternative to conventional cancer therapies. SDT offers safety and cost-effectiveness and exhibits a broad application range that is superior to photodynamic therapy. However, the insufficient reactive oxygen species (ROS) production of current sonosensitizers has hindered its clinical application to date. In this review, the ROS-generation mechanism in SDT and the limitations of current sonosensitizers are briefly reviewed. Also, highlighted are recent nanomaterial-based SDT strategies to improve the efficiency of sonosensitizers, amplify oxidative stress, and elicit antitumor immunity.


Asunto(s)
Antineoplásicos/química , Nanoestructuras/química , Neoplasias/terapia , Animales , Antineoplásicos/farmacología , Terapia Combinada , Desarrollo de Medicamentos , Humanos , Inmunoterapia , Modelos Biológicos , Estrés Oxidativo , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo , Terapia por Ultrasonido
17.
Adv Healthc Mater ; 9(19): e2000877, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32893995

RESUMEN

Sonodynamic therapy has received increasing attention for cancer treatments as an alternative to photodynamic therapy. However, its clinical applications have been limited by the lack of a sonosensitizer that is capable of producing sufficient amounts of reactive oxygen species (ROS) in response to ultrasound (US) exposure. Herein, PEGylated mesoporous silica-titania nanoparticles (P-MSTNs) are prepared and used as US-responsive nanocarriers for cancer sonotheranostics. Perfluorohexane (PFH), which is chosen as the gas precursor, is physically encapsulated into P-MSTNs using the oil-in-water emulsion method. Owing to the vaporization of the gas precursor, PFH@P-MSTNs (137 nm in diameter) exhibit a strong photoacoustic signal in vivo for at least 6 h. Compared to P-MSTNs, PFH@P-MSTNs generate significantly higher amounts of ROS due to the nanobubble-induced cavitation in the presence of US. When systemically administered to tumor-bearing mice, PFH@P-MSTNs effectively accumulate in the tumor site due to the passive targeting mechanism. Consequently, PFH@P-MSTNs show much higher antitumor efficacy than P-MSTNs due to the enhanced cavitation-mediated ROS generation in response to US exposure. It is considered that PFH@P-MSTNs may hold significant potential for cancer sonotheranostics.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Ratones , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Dióxido de Silicio , Titanio
18.
Sci Adv ; 6(21): eaaz8400, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32637587

RESUMEN

Chemiluminescence (CL) has recently gained attention for CL resonance energy transfer (CRET)-mediated photodynamic therapy of cancer. However, the short duration of the CL signal and low quantum yield of the photosensitizer have limited its translational applications. Here, we report CRET-based nanoparticles (CRET-NPs) to achieve quantum yield-enhanced cancer phototheranostics by reinterpreting the hidden nature of CRET. Owing to reactive oxygen species (ROS)-responsive CO2 generation, CRET-NPs were capable of generating a strong and long-lasting photoacoustic signal in the tumor tissue via thermal expansion-induced vaporization. In addition, the CRET phenomenon of the NPs enhanced ROS quantum yield of photosensitizer through both electron transfer for an oxygen-independent type I photochemical reaction and self-illumination for an oxygen-dependent type II photochemical reaction. Consequently, owing to their high ROS quantum yield, CRET-NPs effectively inhibited tumor growth with complete tumor growth inhibition in 60% of cases, even with a single treatment.

19.
Adv Mater ; 32(16): e1907953, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32125731

RESUMEN

Necroptosis, caspase-independent programmed necrosis, has emerged as a therapeutic target to make dying cancer cells stimulants for antitumor immune responses. The clinical translations exploiting necroptosis, however, have been limited since most cancer cells downregulate receptor-interacting protein kinase 3 (RIPK3) as a key enzyme for necroptosis. Herein, nanobubbles (NBs) that can trigger RIPK3-independent necroptosis, facilitating cell-membrane rupture via the acoustic cavitation effect are reported. The NBs, imbibing perfluoropentane as the gas precursor, are prepared using an amphiphilic polymer conjugate, composed of PEGylated carboxymethyl dextran as the hydrophilic backbone and chlorin e6 as the hydrophobic sonosensitizer. When exposed to ultrasound, the NBs efficiently promote the release of biologically active damage-associated molecular patterns by inducing burst-mediated cell-membrane disintegration. Consequently, the necroptosis-inducible NBs significantly improve antitumor immunity by maturation of dendritic cells and activation of CD8+ cytotoxic T cells both in vitro and in vivo. In addition, the combination of NBs and immune checkpoint blockade leads to complete regression of the primary tumor and beneficial therapeutic activity against metastatic tumors in an RIPK3-deficient CT26 tumor-bearing mouse model. Overall, the innovative NB that causes immunogenic cell death of cancer via RIPK3-independent necroptosis is a promising enhancer for cancer immunotherapy.


Asunto(s)
Acústica , Inmunoterapia/métodos , Nanoestructuras/química , Necroptosis/efectos de los fármacos , Necroptosis/inmunología , Polímeros/química , Polímeros/farmacología , Animales , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Ratones
20.
Acc Chem Res ; 52(7): 1771-1782, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31241894

RESUMEN

Growth in the knowledge of cancer biology has led to the emergence and evolution of cancer nanomedicines by providing the rationale for leveraging nanotechnology to develop better treatment options. The discovery of nanometer-sized intercellular openings in the defective angiogenic tumor vasculature contributed to the development of an idea for the well-known cancer passive targeting regime, enhanced permeability and retention (EPR) effect, of the nanomedicines. Recently, reactive oxygen species (ROS) have been highlighted as one of the key players that underlie the acquisition of the various hallmarks of cancer. As ROS are associated with all stages of cancer, their applications in cancer treatment based on the following concentration-dependent implications have attracted much attention: (1) low to moderate levels of ROS as key signaling molecules, (2) elevated levels of ROS in cancer cells as one of the unique characteristics of cancer, and (3) excessive levels of ROS as cytotoxic agents. Considering ROS from a different point of view, various cancer nanomedicines have been designed to achieve spatiotemporal control of therapeutic action, the main research focus in this area. This Account includes our efforts and preclinical achievements in development of nanomedicines for a range of ROS-mediated cancer therapies. It begins with general background regarding cancer nanomedicines, the significance of ROS in cancer, and a brief overview of ROS-mediated approaches for cancer therapy. Then, this Account highlights the two key roles of ROS that define therapeutic purposes of cancer nanomedicines: (1) ROS as drug delivery enhancers and (2) ROS as cell death inducers. The former inspired us to develop nitric oxide-generating nanoparticles for improved EPR effect, endogenous ROS-responsive polymeric micelles for enhanced intracellular drug delivery, and exogenous ROS-activated micelles for subcellular localization via photochemical internalization. While refining conventional chemotherapy, recent researches also have focused on the latter, the cytotoxic ROS, to advance alternative treatment modalities such as oxidation therapy, photodynamic therapy (PDT), and sonodynamic therapy (SDT). In particular, we have been motivated to develop polymeric nanoreactors containing enzymes to produce H2O2 for oxidation therapy, photosensitizer-loaded gold-nanoclustered polymeric nanoassemblies for photothermally activated PDT overcoming the oxygen dependency of PDT, and hydrophilized TiO2 nanoparticles and Au-TiO2 nanocomposites as novel sonosensitizers for improved SDT efficiency. The integration of nanomedicine and ROS-mediated therapy has emerged as the new paradigm in the treatment of cancer, based on promising proof-of-concept demonstrations in preclinical studies. Further efforts to ensure clinical translation along with more sophisticated cancer nanomedicines to address relevant challenges are expected to be made in the coming years.


Asunto(s)
Antineoplásicos/uso terapéutico , Nanopartículas del Metal/uso terapéutico , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Animales , Línea Celular Tumoral , Portadores de Fármacos/química , Glucosa Oxidasa/química , Humanos , Ratones , Nanomedicina/métodos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Terapia por Ultrasonido/métodos , Verteporfina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA