Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 471
Filtrar
2.
Spine J ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39357744

RESUMEN

BACKGROUND CONTEXT: A deep learning (DL) model for degenerative cervical spondylosis on MRI could enhance reporting consistency and efficiency, addressing a significant global health issue. PURPOSE: Create a DL model to detect and classify cervical cord signal abnormalities, spinal canal and neural foraminal stenosis. STUDY DESIGN/SETTING: Retrospective study conducted from January 2013 to July 2021, excluding cases with instrumentation. PATIENT SAMPLE: Overall, 504 MRI cervical spines were analyzed (504 patients, mean=58 years±13.7[SD]; 202 women) with 454 for training (90%) and 50 (10%) for internal testing. In addition, 100 MRI cervical spines were available for external testing (100 patients, mean=60 years±13.0[SD];26 women). OUTCOME MEASURES: Automated detection and classification of spinal canal stenosis, neural foraminal stenosis, and cord signal abnormality using the DL model. Recall(%), inter-rater agreement (Gwet's kappa), sensitivity, and specificity were calculated. METHODS: Utilizing axial T2-weighted gradient echo and sagittal T2-weighted images, a transformer-based DL model was trained on data labeled by an experienced musculoskeletal radiologist (12 years of experience). Internal testing involved data labeled in consensus by two musculoskeletal radiologists (reference standard, both with 12-years-experience), two subspecialist radiologists, and two in-training radiologists. External testing was performed. RESULTS: The DL model exhibited substantial agreement surpassing all readers in all classes for spinal canal (κ=0.78, p<0.001 vs. κ range=0.57-0.70 for readers) and neural foraminal stenosis (κ=0.80, p<0.001 vs. κ range=0.63-0.69 for readers) classification. The DL model's recall for cord signal abnormality (92.3%) was similar to all readers (range: 92.3-100.0%). Nearly perfect agreement was demonstrated for binary classification (normal/mild vs. moderate/severe) (κ=0.95, p<0.001 for spinal canal; κ=0.90, p<0.001 for neural foramina). External testing showed substantial agreement using all classes (κ=0.76, p<0.001 for spinal canal; κ=0.66, p<0.001 for neural foramina) and high recall for cord signal abnormality (91.9%). The DL model demonstrated high sensitivities (range:83.7%-92.4%) and specificities (range:87.8%-98.3%) on both internal and external datasets for spinal canal and neural foramina classification. CONCLUSIONS: Our DL model for degenerative cervical spondylosis on MRI showed good performance, demonstrating substantial agreement with the reference standard. This tool could assist radiologists in improving the efficiency and consistency of MRI cervical spondylosis assessments in clinical practice.

3.
Int J Biol Macromol ; : 135779, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39419688

RESUMEN

Marine polysaccharide-based biomaterials possess a range of excellent functions and properties, such as antiviral, antioxidant, immune regulation, and promoting cell migration, and are widely used in modern medicine. In this study, a marine polysaccharide-based composite hydrogel was synthesized using carboxymethyl chitosan and oxidized fucoidan as matrix, and loads therapeutic drugs for the treatment of burn wounds infected with bacteria. The composite hydrogels can slowly release drugs at the wound site, providing a long-lasting therapeutic effect including antibacterial, antioxidant, and analgesic, in this way to facilitate the restoring of infected burn wounds by inhibiting bacterial infections, promoting cell migration, facilitating collagen regeneration, and restoring the abnormal alteration of factors such as IL-1ß and CD86.

4.
Sci Rep ; 14(1): 20573, 2024 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232083

RESUMEN

Asthma is a prevalent chronic disease characterized by airflow obstruction, causing breathing difficulties and wheezing. This study investigates the association between the C-reactive protein to albumin ratio (CAR) and asthma prevalence, as well as all-cause and respiratory mortality among asthma patients, using data from the 2001-2018 National Health and Nutrition Examination Survey. We included participants aged 20 years and older with complete CAR data, excluding those who were pregnant or lost to follow-up. The analysis employed weighted logistic regression and Cox proportional hazards models with stepwise adjustment, restricted cubic spline analysis for nonlinear relationships, and time-dependent ROC curves for predictive accuracy. Results showed that the highest CAR quartile significantly increased the risk of asthma (OR 1.56, 95% CI 1.38-1.78), all-cause mortality (HR 2.20, 95% CI 1.67-2.89), and respiratory mortality (HR 2.56, 95% CI 1.30-5.38). The impact of CAR on all-cause mortality was particularly significant in hypertensive patients. These findings highlight CAR's potential as a valuable biomarker for predicting asthma prevalence and mortality, underscoring its role in asthma management and prognostication.


Asunto(s)
Asma , Biomarcadores , Proteína C-Reactiva , Humanos , Asma/mortalidad , Asma/sangre , Asma/epidemiología , Femenino , Masculino , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis , Adulto , Persona de Mediana Edad , Biomarcadores/sangre , Encuestas Nutricionales , Prevalencia , Anciano , Modelos de Riesgos Proporcionales , Albúmina Sérica/análisis , Adulto Joven , Factores de Riesgo
5.
Int J Biol Macromol ; 279(Pt 3): 135270, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39233162

RESUMEN

Proper wound dressing is essential to facilitate skin wound healing, stop bleeding, and prevent infections. Herein, carboxymethyl chitosan (CMC) was crosslinked with oxidized tannic acid (OTA) to form an adhesive and self-healing OTA/CMC hydrogel, and etamsylate was loaded to enhance the hemostatic effect of the hydrogel dressing. The resultant OTA/CMC/E hydrogel exhibited a spectrum of noteworthy attributes including excellent cell compatibility, high antioxidant activity, effective anti-bacterium, and excellent hemorrhage control. Functionally, it mitigated intracellular ROS levels, hindered the proliferation of Staphylococcus aureus, while also significantly reducing hemostasis duration and total blood loss. In vivo full-thickness skin incision results showed that the OTA/CMC/E hydrogel could efficiently accelerate in vivo wound closure and healing, promising as an advanced wound healing material.


Asunto(s)
Quitosano , Hidrogeles , Staphylococcus aureus , Taninos , Cicatrización de Heridas , Quitosano/análogos & derivados , Quitosano/química , Quitosano/farmacología , Cicatrización de Heridas/efectos de los fármacos , Taninos/química , Taninos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Animales , Staphylococcus aureus/efectos de los fármacos , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Oxidación-Reducción/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Especies Reactivas de Oxígeno/metabolismo , Vendajes , Humanos , Masculino , Polifenoles
6.
Plant Physiol Biochem ; 215: 109015, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39133983

RESUMEN

Male sterile lines are key resources for hybrid seed production and for ensuring high varietal purity. However, the genes and mechanisms underlying sesame male sterility remain largely unknown. Hence, this study identified an O-acetylserine(thiol)lyase gene SiOASTL1 and functionally characterized its roles in inducing defective anther development. Spatiotemporal expression analysis revealed that SiOASTL1 is significantly (2.7 fold) up-regulated in sterile sesame anthers at the microspore stage compared with fertile ones. Sequence and phylogenetic analyses showed that SiOASTL1 is homologous to Arabidopsis OAS-TL plastid isoforms. We thus overexpressed SiOASTL1 in Arabidopsis to unravel its regulatory roles. Cytological observation revealed that SiOASTL1 overexpression transformed transgenic plants into male sterile lines arising at the microspore development stage. SiOASTL1 overexpression decreased cysteine biosynthesis and down-regulated the expression of the sporopollenin synthesis-related genes, including AtTKPR1, AtTKPR2, AtPKSA, and AtPKSB in transgenic Arabidopsis. Consequently, the tapetum programmed cell death (PCD) was delayed, resulting in the formation of defective pollen grains with irregular walls and empty cytoplasm. Our findings prove that the induction of SiOASTL1 expression disrupts pollen development and contributes to sesame male sterility. Moreover, these results suggest that genetic manipulation of SiOASTL1 expression may facilitate the development of new hybrid varieties in sesame and other crops.


Asunto(s)
Apoptosis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Infertilidad Vegetal , Plantas Modificadas Genéticamente , Sesamum , Sesamum/genética , Sesamum/metabolismo , Infertilidad Vegetal/genética , Arabidopsis/genética , Apoptosis/genética , Polen/genética , Polen/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Filogenia
7.
Molecules ; 29(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39124860

RESUMEN

Using Ni(II) as the catalyst, electron-deficient 3,5-dimethylacryloylpyrazole olefin was reacted with C,N-diarylnitrones alone for 10 min to prepare novel five-member heterocyclic products, 4-3,5-dimethylacryloylpyrazole isoxazolidines with 100% regioselectivity and up to 99% yield. And then, taking these cycloadducts as substrates, six kinds of derivatization reactions, like ring-opening, nucleophilic substitution, addition-elimination and reduction, were studied. Experimental results showed that all kinds of transformations could obtain the target products at a high conversion rate under mild conditions, a finding which provided the basic methods for organic synthesis methodology research based on an isoxazolidine skeleton.

8.
Mol Plant ; 17(10): 1520-1538, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39169629

RESUMEN

Cold stress is one of the major abiotic stress factors affecting rice growth and development, leading to significant yield loss in the context of global climate change. Exploring natural variants that confer cold resistance and the underlying molecular mechanism responsible for this is the major strategy to breed cold-tolerant rice varieties. Here, we show that natural variations of a SIMILAR to RCD ONE (SRO) gene, OsSRO1c, confer cold tolerance in rice at both seedling and booting stages. Our in vivo and in vitro experiments demonstrated that OsSRO1c possesses intrinsic liquid-liquid phase-separation ability and recruits OsDREB2B, an AP2/ERF transcription factor that functions as a positive regulator of cold stress, into its biomolecular condensates in the nucleus, resulting in elevated transcriptional activity of OsDREB2B. We found that the OsSRO1c-OsDREB2B complex directly responds to low temperature through dynamic phase transitions and regulates key cold-response genes, including COLD1. Furthermore, we showed that introgression of an elite haplotype of OsSRO1c into a cold-susceptible indica rice could significantly increase its cold resistance. Collectively, our work reveals a novel cold-tolerance regulatory module in rice and provides promising genetic targets for molecular breeding of cold-tolerant rice varieties.


Asunto(s)
Frío , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Respuesta al Choque por Frío , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
9.
Eur J Pharmacol ; 977: 176748, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38897443

RESUMEN

An increase in fibrous connective tissue and a decrease in parenchymal cells in organ tissues are the primary pathological alterations linked to organ fibrosis. If fibrosis is not treated, organ structure is destroyed, function can decline, or even fail, posing a serious risk to human life and health. Numerous organs develop fibrosis, and organ fibroproliferative illnesses account for almost 45% of patient deaths from various diseases in the industrialized world, as well as a major cause of disability and mortality in many other diseases. Recently, it has become evident that histone modification is an important way to regulate gene expression in organ fibrosis. Histone modifications alter the structure of chromatin, thereby affecting gene accessibility. Histone acetylation modifications relax chromatin, making it easier for gene transcription factors to access DNA, thereby promoting gene transcription. In addition, histone modifications recruit other proteins to interact with chromatin to form complexes that further regulate gene expression. Histone methylation modifications recruit methylation-reading proteins that recognize methylation marks and alter gene expression status. It not only affects the normal physiological function of cells, but also plays an important role in organ fibrosis. This article reviews the important role played by histone modifications in organ fibrosis and potential therapeutic approaches.


Asunto(s)
Fibrosis , Histonas , Humanos , Histonas/metabolismo , Animales , Procesamiento Proteico-Postraduccional , Acetilación , Metilación
10.
Gastroenterol Res Pract ; 2024: 5517459, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882392

RESUMEN

Purpose: To compare the antireflux effect, long-term nutritional levels, and quality of life (QoL) between laparoscopy-assisted proximal gastrectomy with double-tract reconstruction (LPG-DTR) and laparoscopy-assisted total gastrectomy with Roux-en-Y reconstruction (LTG-RY) for adenocarcinoma of the esophagogastric junction (AEG). Methods: This multicenter retrospective cohort study collected clinicopathological and follow-up data of AEG patients from January 2016 to January 2021 at five high-volume surgery centers. The study included patients who underwent digestive tract reconstruction with LPG-DTR or LTG-RY after tumor resection. Propensity score matching (PSM) was utilized to minimize confounding factors. The comparison after PSM included postoperative complications, reflux esophagitis, long-term nutritional levels, and QoL. Results: A total of 151 consecutive patients underwent either LPG-DTR or LTG-RY. After PSM, 50 patients from each group were included in the analysis. The frequency of reflux esophagitis and Clavien-Dindo classification did not significantly differ between the two groups (P > 0.05). At 1 year after surgery, the LPG-DTR group showed significantly higher weight and hemoglobin levels than the LTG-RY group (P < 0.05). The overall postoperative Visick grade differed significantly between the groups (P < 0.05), but there was no significant difference in the proportion of patients with Visick≥III (P > 0.05). Conclusion: Both LPG-DTR and LTG-RY are safe and feasible methods for digestive tract reconstruction in patients with AEG. Both methods have similar antireflux effects and postoperative QoL. However, LPG-DTR resulted in superior nutritional levels compared to LTG-RY. Therefore, LPG-DTR is considered a relatively effective method for digestive tract reconstruction in AEG patients.

11.
Plants (Basel) ; 13(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38931021

RESUMEN

This study focuses on optimizing chlorophyll extraction techniques, in which leaf discs are cut from places on the leaf blade to enhance chlorophyll concentration in sesame (Sesamum indicum L.) leaves. Thirty sesame genotypes, categorized into light green (LG), middle green (MG), and deep green (DG) pigment groups based on leaf coloration, were selected from a larger pool of field-grown accessions. The investigation involved determining optimal Soil Plant Analysis Development (SPAD) value index measurements, quantifying pigment concentrations, exploring extraction solvents, and selecting suitable leaf disk positions. Significant variations in chlorophyll content were observed across genotypes, greenness categories, and leaf disk positions. The categorization of genotypes into DG, MG, and LG groups revealed a correlation between leaf appearance and chlorophyll content. The study highlighted a consistent relationship between carotenoids and chlorophyll, indicating their role in adaptation to warm environments. An examination of leaf disk positions revealed a significant chlorophyll gradient along the leaf blade, emphasizing the need for standardized protocols. Chlorophyll extraction experiments identified DMSO and 96% ethanol, particularly in those incubated for 10 min at 85 °C, as effective choices. This recommendation considers factors like cost-effectiveness, time efficiency, safety, and environmental regulations, ensuring consistent and simplified extraction processes. For higher chlorophyll extraction, focusing on leaf tips and the 75% localization along the sesame leaf blade is suggested, as this consistently yields increased chlorophyll content. Furthermore, our examination revealed significant anatomical variations in the internal structure of the mesophyll tissue leaves between deep green and light green sesame plants, primarily linked to chloroplast density and pigment-producing structures. Our findings, therefore, provide insightful knowledge of chlorophyll gradients and encourage the use of standardized protocols that enable researchers to refine their experimental designs for precise and comparable chlorophyll measurements. The recommended solvent choices ensure reliable outcomes in plant physiology, ecology, and environmental studies.

12.
Adv Healthc Mater ; 13(23): e2400884, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38701326

RESUMEN

Bacterial infection, inflammation, and excessive oxidative stress are the primary factors that contribute to delayed healing of skin wounds. In this study, a multifunctional wound dressing (SF/Ag@rGO hydrogel) is developed to promote the healing of infected skin wounds by combining the inherent antibacterial activity of Ag nanoparticles (NPs) with near-infrared (NIR)-assisted antibacterial therapy. Initially, L-ascorbic acid is used as a reducing agent and PVP-K17 as a stabilizer and dispersant, this facilitates the synthesis of reduced graphene oxide loaded with Ag NPs (Ag@rGO). Ag@rGO is then blended with a silk fibroin (SF) solution to form an instantly gelling SF/Ag@rGO hydrogel that exhibits rapid self-healing, injectability, shape adaptability, NIR responsiveness, antioxidant, high tissue adhesion, and robust mechanical properties. In vitro and in vivo experiments show that the SF/Ag@rGO hydrogel demonstrates strong antioxidant and photothermal antibacterial capabilities, promoting wound healing through angiogenesis, stimulating collagen generation, alleviating inflammation, antioxidant, and promoting cell proliferation, indicating that the SF/Ag@rGO hydrogel dressing is an ideal candidate for clinical treatment of full-thickness bacterial-stained wounds.


Asunto(s)
Antibacterianos , Fibroínas , Grafito , Hidrogeles , Nanopartículas del Metal , Plata , Piel , Cicatrización de Heridas , Grafito/química , Grafito/farmacología , Fibroínas/química , Fibroínas/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Animales , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Piel/efectos de los fármacos , Ratones , Vendajes , Masculino , Regeneración/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Humanos
13.
Clin Transl Oncol ; 26(8): 1976-1987, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38777950

RESUMEN

PURPOSE: The advent of circulating tumor DNA (ctDNA) technology has provided a convenient and noninvasive means to continuously monitor cancer genomic data, facilitating personalized cancer treatment. This study aimed to evaluate the supplementary benefits of plasma ctDNA alongside traditional tissue-based next-generation sequencing (NGS) in identifying targetable mutations and tumor mutational burden (TMB) in colorectal cancers (CRC). METHODS: Our study involved 76 CRC patients, collecting both tissue and plasma samples for NGS. We assessed the concordance of gene mutational status between ctDNA and tissue, focusing on actionable genes such as KRAS, NRAS, PIK3CA, BRAF, and ERBB2. Logistic regression analysis was used to explore variables associated with discordance and positive mutation rates. RESULTS: In total, 26 cancer-related genes were identified. The most common variants in tumor tissues and plasma samples were in APC (57.9% vs 19.7%), TP53 (55.3% vs 22.4%) and KRAS (47.4% vs 43.4%). Tissue and ctDNA showed an overall concordance of 73.53% in detecting actionable gene mutations. Notably, plasma ctDNA improved detection for certain genes and gene pools. Variables significantly associated with discordance included gender and peritoneal metastases. TMB analysis revealed a higher detection rate in tissues compared to plasma, but combining both increased detection. CONCLUSIONS: Our study highlights the importance of analyzing both tissue and plasma for detecting actionable mutations in CRC, with plasma ctDNA offering added value. Discordance is associated with gender and peritoneal metastases, and TMB analysis can benefit from a combination of tissue and plasma data. This approach provides valuable insights for personalized CRC treatment.


Asunto(s)
ADN Tumoral Circulante , Neoplasias Colorrectales , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/patología , Masculino , Femenino , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Persona de Mediana Edad , Anciano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteínas Proto-Oncogénicas B-raf/genética , GTP Fosfohidrolasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Adulto , Anciano de 80 o más Años , Proteína p53 Supresora de Tumor/genética , Receptor ErbB-2/genética , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/sangre
14.
Fitoterapia ; 176: 105985, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705541

RESUMEN

Seven pairs of undescribed monoterpenoid polyprenylated acylphloroglucinol enantiomers [(±)-hypermonanones A-G (1-7)], together with three known analogues, were identified from the whole plant of Hypericum monanthemum Hook. The structures of these compounds were determined by analyses of their UV, HRESIMS, 1D/2D NMR spectroscopic data, and NMR calculations. The absolute configurations of these compounds were assigned by ECD calculations after chiral HPLC separation. Diverse monoterpene moieties were fused at C-3/C-4 of the dearomatized acylphloroglucinol core, which led to 3,4-dihydro-2H-pyran-integrated angular or linear type 6/6/6 tricyclic skeletons in 1-7. Compounds (-)-2 and (+)-2 exhibited significant NO inhibitory activity against LPS induced RAW264.7 cells with the IC50 values of 7.07 ± 1.02 µM and 11.39 ± 0.24 µM, respectively.


Asunto(s)
Hypericum , Monoterpenos , Floroglucinol , Fitoquímicos , Hypericum/química , Ratones , Estructura Molecular , Monoterpenos/aislamiento & purificación , Monoterpenos/farmacología , Floroglucinol/aislamiento & purificación , Floroglucinol/farmacología , Floroglucinol/química , Células RAW 264.7 , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Animales , Óxido Nítrico/metabolismo , Estereoisomerismo , China
15.
Surgery ; 176(2): 379-385, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38762380

RESUMEN

BACKGROUND: Sepsis, characterized by dysregulated host responses to infection, remains a critical global health concern, with high morbidity and mortality rates. The gastrointestinal tract assumes a pivotal role in sepsis due to its dual functionality as a protective barrier against injurious agents and as a regulator of motility. Dexmedetomidine, an α2-adrenergic agonist commonly employed in critical care settings, exhibits promise in influencing the maintenance of intestinal barrier integrity during sepsis. However, its impact on intestinal motility, a crucial component of intestinal function, remains incompletely understood. METHODS: In this study, we investigated dexmedetomidine's multifaceted effects on intestinal barrier function and motility during sepsis using both in vitro and in vivo models. Sepsis was induced in Sprague-Dawley rats via cecal ligation and puncture. Rats were treated with dexmedetomidine post-cecal ligation and puncture, and various parameters were assessed to elucidate dexmedetomidine's impact. RESULTS: Our findings revealed a dichotomous influence of dexmedetomidine on intestinal physiology. In septic rats, dexmedetomidine administration resulted in improved intestinal barrier integrity, as evidenced by reduced mucosal hyper-permeability and morphological alterations. However, a contrasting effect was observed on intestinal motility, as dexmedetomidine treatment inhibited both the frequency and amplitude of contractions in isolated intestinal strips and decreased the distance of ink migration in vivo. Additionally, dexmedetomidine suppressed the secretion of pro-motility hormones while having no influence on hormones that inhibit intestinal peristalsis. CONCLUSION: The study revealed that during sepsis, dexmedetomidine exhibited protective effects on barrier integrity, although concurrently it hindered intestinal motility, partly attributed to its modulation of pro-motility hormone secretion. These findings underscore the necessity of a comprehensive understanding of dexmedetomidine's impact on multiple facets of gastrointestinal physiology in sepsis management, offering potential implications for therapeutic strategies and patient care.


Asunto(s)
Dexmedetomidina , Motilidad Gastrointestinal , Ratas Sprague-Dawley , Sepsis , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Animales , Sepsis/tratamiento farmacológico , Motilidad Gastrointestinal/efectos de los fármacos , Ratas , Masculino , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Agonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Modelos Animales de Enfermedad , Permeabilidad/efectos de los fármacos
16.
Molecules ; 29(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38731609

RESUMEN

Lithium-ion batteries (LIBs) have the advantage of high energy density, which has attracted the wide attention of researchers. Nevertheless, the growth of lithium dendrites on the anode surface causes short life and poor safety, which limits their application. Therefore, it is necessary to deeply understand the growth mechanism of lithium dendrites. Here, the growth mechanism of lithium dendrites is briefly summarized, and the real-time monitoring technologies of lithium dendrite growth in recent years are reviewed. The real-time monitoring technologies summarized here include in situ X-ray, in situ Raman, in situ resonance, in situ microscopy, in situ neutrons, and sensors, and their representative studies are summarized. This paper is expected to provide some guidance for the research of lithium dendrites, so as to promote the development of LIBs.

17.
Antioxidants (Basel) ; 13(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38790619

RESUMEN

Sesame seeds are important resources for relieving oxidation stress-related diseases. Although a significant variation in seeds' antioxidant capability is observed, the underlying biochemical and molecular basis remains elusive. Thus, this study aimed to reveal major seed components and key molecular mechanisms that drive the variability of seeds' antioxidant activity (AOA) using a panel of 400 sesame accessions. The seeds' AOA, total flavonoid, and phenolic contents varied from 2.03 to 78.5%, 0.072 to 3.104 mg CAE/g, and 2.717 to 21.98 mg GAE/g, respectively. Analyses revealed that flavonoids and phenolic acids are the main contributors to seeds' AOA variation, irrespective of seed coat color. LC-MS-based polyphenol profiling of high (HA) and low (LA) antioxidant seeds uncovered 320 differentially accumulated phenolic compounds (DAPs), including 311 up-regulated in HA seeds. Tricin, persicoside, 5,7,4',5'-tetrahydro-3',6-dimethoxyflavone, 8-methoxyapigenin, and 6,7,8-tetrahydroxy-5-methoxyflavone were the top five up-regulated in HA. Comparative transcriptome analysis at three seed developmental stages identified 627~2357 DEGs and unveiled that differential regulation of flavonoid biosynthesis, phenylpropanoid biosynthesis, and stilbene biosynthesis were the key underlying mechanisms of seed antioxidant capacity variation. Major differentially regulated phenylpropanoid structural genes and transcription factors were identified. SINPZ0000571 (MYB), SINPZ0401118 (NAC), and SINPZ0500871 (C3H) were the most highly induced TFs in HA. Our findings may enhance quality breeding.

18.
Genome Med ; 16(1): 47, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566132

RESUMEN

BACKGROUND: Aberrant DNA methylation is a major characteristic of cancer genomes. It remains unclear which biological processes determine epigenetic reprogramming and how these processes influence the variants in the cancer methylome, which can further impact cancer phenotypes. METHODS: We performed pairwise permutations of 381,900 loci in 569 paired DNA methylation profiles of cancer tissue and matched normal tissue from The Cancer Genome Atlas (TCGA) and defined conserved differentially methylated positions (DMPs) based on the resulting null distribution. Then, we derived independent methylation signatures from 2,465 cancer-only methylation profiles from the TCGA and 241 cell line-based methylation profiles from the Genomics of Drug Sensitivity in Cancer (GDSC) cohort using nonnegative matrix factorization (NMF). We correlated DNA methylation signatures with various clinical and biological features, including age, survival, cancer stage, tumor immune microenvironment factors, and immunotherapy response. We inferred the determinant genes of these methylation signatures by integrating genomic and transcriptomic data and evaluated the impact of these signatures on cancer phenotypes in independent bulk and single-cell RNA/methylome cohorts. RESULTS: We identified 7,364 differentially methylated positions (2,969 Hyper-DMPs and 4,395 Hypo-DMPs) in nine cancer types from the TCGA. We subsequently retrieved three highly conserved, independent methylation signatures (Hyper-MS1, Hypo-MS1, and Hypo-MS4) from cancer tissues and cell lines based on these Hyper and Hypo-DMPs. Our data suggested that Hypo-MS4 activity predicts poor survival and is associated with immunotherapy response and distant tumor metastasis, and Hypo-MS4 activity is related to TP53 mutation and FOXA1 binding specificity. In addition, we demonstrated a correlation between the activities of Hypo-MS4 in cancer cells and the fractions of regulatory CD4 + T cells with the expression levels of immunological genes in the tumor immune microenvironment. CONCLUSIONS: Our findings demonstrated that the methylation signatures of distinct biological processes are associated with immune activity in the cancer microenvironment and predict immunotherapy response.


Asunto(s)
Metilación de ADN , Neoplasias , Humanos , Epigénesis Genética , Microambiente Tumoral/genética , Neoplasias/genética , Neoplasias/terapia , Perfilación de la Expresión Génica/métodos , Pronóstico , Inmunoterapia
19.
World J Gastrointest Oncol ; 16(3): 933-944, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38577453

RESUMEN

BACKGROUND: Transanal endoscopic intersphincteric resection (ISR) surgery currently lacks sufficient clinical research and reporting. AIM: To investigate the clinical effectiveness of transanal endoscopic ISR, in order to promote the clinical application and development of this technique. METHODS: This study utilized a retrospective case series design. Clinical and pathological data of patients with lower rectal cancer who underwent transanal endoscopic ISR at the First Affiliated Hospital of Xiamen University between May 2018 and May 2023 were included. All patients underwent transanal endoscopic ISR as the surgical approach. We conducted this study to determine the perioperative recovery status, postoperative complications, and pathological specimen characteristics of this group of patients. RESULTS: This study included 45 eligible patients, with no perioperative mortalities. The overall incidence of early complications was 22.22%, with a rate of 4.44% for Clavien-Dindo grade ≥ III events. Two patients (4.4%) developed anastomotic leakage after surgery, including one case of grade A and one case of grade B. Postoperative pathological examination confirmed negative circumferential resection margins and distal resection margins in all patients. The mean distance between the tumor lower margin and distal resection margin was found to be 2.30 ± 0.62 cm. The transanal endoscopic ISR procedure consistently yielded high quality pathological specimens. CONCLUSION: Transanal endoscopic ISR is safe, feasible, and provides a clear anatomical view. It is associated with a low incidence of postoperative complications and favorable pathological outcomes, making it worth further research and application.

20.
J Fluoresc ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613712

RESUMEN

A naphthalimide Schiff base fluorescent probe (BSS) was designed and synthesized from 4-bromo-1,8-naphthalic anhydride, and its structure was characterized by 1HNMR, 13CNMR, FTIR, and MS. Fluorescence emission spectra showed that probe BSS could realize the "turn-off" detection of Cu2+ in acetonitrile solution, detection process with strong specificity and excellent anti-interference of other metal ions. In the fluorescence titration experiments, fluorescence intensity of BSS showed a good linear relationship with the Cu2+ concentration (0-10 µmol/L), and the detection limit was up to 7.0 × 10- 8 mol/L. Meanwhile, BSS and Cu2+ could form a 1:1 complex (BSS-Cu2+) during the reaction process. Under the same detection conditions, complex BSS-Cu2+ had specific fluorescence recovery properties for H2PO4- and the whole process was not only fast (6 s) but also free of interference from other anions, with a detection limit was as low as 5.7 × 10- 8 mol/L. In addition, complex BSS-Cu2+ could be successfully applied to the detection of H2PO4- in actual water samples, which with excellent application prospects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...