Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 929: 172598, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38642769

RESUMEN

Wastewater treatment is an important source of non-CO2 greenhouse gases (GHGs). However, current quantification of these GHG emissions mainly employs unit-based measurements, where emissions from individual process units are identified, leading to large uncertainties of overall emissions. Here we introduce plant-integrated measurements, where emissions from the whole plant are measured through the off-gas pipelines of the enclosed facility, to quantify methane (CH4) and nitrous oxide (N2O) emissions from an underground municipal wastewater treatment plant (WWTP) in southern China. Our results show that the primary oxic tank contributes the largest in total CH4 and N2O emissions, with an average fraction of over 80 % and over 90 %, respectively. This can be attributed to the vigorous aeration process, which facilitates the transfer of dissolved CH4 and N2O from the liquid phase to the atmosphere through intensive air stripping. The plant-integrated measurements yield around 3-9 times higher emission factors of CH4 and N2O than the unit-based measurements. This difference in emission accounting is attributed to both varying survey durations of the two approaches and the omission of uncertain emission sources during unit-based measurements. The comparison between these two approaches indicates that plant-integrated measurements are more applicable for emission quantification of the whole plant whereas unit-based measurements provide insights into the emission characteristics of individual process units. More plant-integrated measurements are needed in the future for more accurate emission accounting of WWTPs.

2.
Environ Sci Ecotechnol ; 20: 100345, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38094259

RESUMEN

Wastewater treatment is an important source of greenhouse gases (GHGs). Yet large uncertainties remain in the quantification of GHG emissions from municipal wastewater treatment plants (MWWTPs) in China. A high-resolution and technology-specific emission inventory is still lacking to support mitigation strategies of MWWTPs. Here we develop a plant-level and technology-based MWWTP emission inventory for China covering 8703 plants and 19 treatment technology categories by compiling and harmonizing the most up-to-date facility-level databases. China's methane (CH4) and nitrous oxide (N2O) emissions from MWWTPs in 2020 are estimated to be 150.6 Gg and 22.0 Gg, respectively, with the uncertainty range of -30% to 37% and -30% to 26% at 95% confidence interval. We find an emission inequality across cities, with the richest cities emitting two times more CH4 and N2O per capita from municipal wastewater treatment than the poorest cities. The emitted CH4 and N2O are dominated by Anaerobic/Anoxic/Oxic-, Sequencing Batch Reactor-, Oxidation Ditch-, and Anoxic/Oxic-based MWWTPs of less than 20 years old. Considering the relatively young age structure of China's MWWTPs, the committed emissions highlight the importance of reducing on-site GHG emissions by optimization of operating conditions and innovation management. The emission differences among our estimates, previous studies, and the Intergovernmental Panel on Climate Change guidelines are largely attributed to the uncertainties in emission factors, implying the urgent need for more plant-integrated measurements to improve the accuracy of emission accounting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...