Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Adv Healthc Mater ; : e2401406, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007245

RESUMEN

Tissue engineering for penile corpora cavernosa defects requires microvascular system reconstruction.GelMA hydrogels show promise for tissue regeneration. However, using stem cells faces challenges such as immune rejection, limited proliferation and differentiation, and biosafety concerns. Therefore, acellular tissue regeneration may avoid these issues. Exosomes are used from muscle-derived stem cells (MDSCs) to modify 3D-printed hydrogel scaffolds for acellular tissue regeneration. Hypoxia-preconditioned MDSC-derived exosomes are obtained to enhance the therapeutic effect. In contrast to normoxic exosomes (N-Exos), hypoxic exosomes (H-Exos) are found to markedly enhance the proliferation, migration, and capillary-like tube formation of human umbilical vein endothelial cells (HUVECs). High-throughput sequencing analysis of miRNAs isolated from both N-Exos and H-Exos revealed a significant upregulation of miR-21-5p in H-Exos following hypoxic preconditioning. Further validation demonstrated that the miR-21-5p/PDCD4 pathway promoted the proliferation of HUVECs. Epigallocatechin gallate (EGCG) is introduced to improve the mechanical properties and biocompatibility of GelMA hydrogels. EGCG-GelMA scaffolds loaded with different types of Exos are transplanted to repair rabbit penile corpora cavernosa defects, observed the blood flow and repair status of the defect site through color Doppler ultrasound and magnetic resonance imaging, and ultimately restored the rabbit penile erection function and successfully bred offspring. Thus, acellular hydrogel scaffolds offer an effective treatment for penile corpora cavernosa defects.

2.
Brain ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875478

RESUMEN

USP25 encodes ubiquitin-specific proteases 25, a key member of deubiquitinating enzyme family and is involved in neural fate determination. Although abnormal expression in Down's syndrome was reported previously, the specific role of USP25 in human diseases has not been defined. In this study, we performed trio-based whole exome sequencing in a cohort of 319 cases (families) with generalized epilepsy of unknown etiology. Five heterozygous USP25 variants including two de novo and three co-segregated variants were determined in eight individuals affected by generalized seizures and/or febrile seizures from five unrelated families. The frequency of USP25 variants showed a significantly high aggregation in this cohort compared to the East Asian population and all populations in the gnomAD database. The mean onset ages of febrile and afebrile seizures were 10 months (infancy) and 11.8 years (juvenile), respectively. The patients achieved seizure freedom except one had occasional nocturnal seizures at the last follow-up. Two patients exhibited intellectual disability. Usp25 was ubiquitously expressed in mouse brain with two peaks on embryonic days (E14‒E16) and postnatal day 21, respectively. Similarly, USP25 expressed in fetus/early childhood stage with a second peak at approximately 12‒20 years old in human brain, consistent with the seizure onset age at infancy and juvenile in the patients. To investigate the functional impact of USP25 deficiency in vivo, we established Usp25 knock-out mice, which showed increased seizure susceptibility compared to wild-type mice in pentylenetetrazol-induced seizure test. To explore the impact of USP25 variants, we employed multiple functional detections. In HEK293T cells, the severe phenotype associated variant (p.Gln889Ter) led to a significant reduction of mRNA and protein expressions but formed a stable truncated dimers with increment of deubiquitinating enzyme activities and abnormal cellular aggregations, indicating a gain-of-function effect. The p.Gln889Ter and p.Leu1045del increased neuronal excitability in mice brain, with a higher firing ability in p.Gln889Ter. These functional impairments align with the severity of the observed phenotypes, suggesting a genotype-phenotype correlation. Hence, a moderate association between USP25 and epilepsy was noted, indicating USP25 is potentially a predisposing gene for epilepsy. Our results from Usp25 null mice and the patient-derived variants indicated that USP25 would play epileptogenic role via loss-of-function or gain-of-function effects. The truncated variant p.Gln889Ter would have profoundly different effect on epilepsy. Together, our results underscore the significance of USP25 heterozygous variants in epilepsy, thereby highlighting the critical role of USP25 in the brain.

3.
Cell Biosci ; 14(1): 66, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783336

RESUMEN

BACKGROUND: Human patients often experience an episode of serious seizure activity, such as status epilepticus (SE), prior to the onset of temporal lobe epilepsy (TLE), suggesting that SE can trigger the development of epilepsy. Yet, the underlying mechanisms are not fully understood. The low-density lipoprotein receptor related protein (Lrp4), a receptor for proteoglycan-agrin, has been indicated to modulate seizure susceptibility. However, whether agrin-Lrp4 pathway also plays a role in the development of SE-induced TLE is not clear. METHODS: Lrp4f/f mice were crossed with hGFAP-Cre and Nex-Cre mice to generate brain conditional Lrp4 knockout mice (hGFAP-Lrp4-/-) and pyramidal neuron specific knockout mice (Nex-Lrp4-/-). Lrp4 was specifically knocked down in hippocampal astrocytes by injecting AAV virus carrying hGFAP-Cre into the hippocampus. The effects of agrin-Lrp4 pathway on the development of SE-induced TLE were evaluated on the chronic seizure model generated by injecting kainic acid (KA) into the amygdala. The spontaneous recurrent seizures (SRS) in mice were video monitored. RESULTS: We found that Lrp4 deletion from the brain but not from the pyramidal neurons elevated the seizure threshold and reduced SRS numbers, with no change in the stage or duration of SRS. More importantly, knockdown of Lrp4 in the hippocampal astrocytes after SE induction decreased SRS numbers. In accord, direct injection of agrin into the lateral ventricle of control mice but not mice with Lrp4 deletion in hippocampal astrocytes also increased the SRS numbers. These results indicate a promoting effect of agrin-Lrp4 signaling in hippocampal astrocytes on the development of SE-induced TLE. Last, we observed that knockdown of Lrp4 in hippocampal astrocytes increased the extracellular adenosine levels in the hippocampus 2 weeks after SE induction. Blockade of adenosine A1 receptor in the hippocampus by DPCPX after SE induction diminished the effects of Lrp4 on the development of SE-induced TLE. CONCLUSION: These results demonstrate a promoting role of agrin-Lrp4 signaling in hippocampal astrocytes in the development of SE-induced development of epilepsy through elevating adenosine levels. Targeting agrin-Lrp4 signaling may serve as a potential therapeutic intervention strategy to treat TLE.

5.
Proc Natl Acad Sci U S A ; 121(18): e2310283121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38669183

RESUMEN

Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.


Asunto(s)
Proteínas Portadoras , Polaridad Celular , Proteínas de la Membrana , Columna Vertebral , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/embriología , Humanos , Ratones , Polaridad Celular/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Columna Vertebral/anomalías , Columna Vertebral/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Escoliosis/genética , Escoliosis/congénito , Escoliosis/metabolismo , Vía de Señalización Wnt/genética , Predisposición Genética a la Enfermedad , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Femenino
6.
J Colloid Interface Sci ; 667: 192-198, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38636221

RESUMEN

Designing and developing cost-effective, high-performance catalysts for hydrogen evolution reaction (HER) is crucial for advancing hydrogen production technology. Tungsten-based sulfides (WSx) exhibit great potential as efficient HER catalysts, however, the activity is limited by the larger energy required for water dissociation under alkaline conditions. Herein, we adopt a top-down strategy to construct heterostructure Co-WS2 nanofiber catalysts. The experimental results and theoretical simulations unveil that the work functions-induced built-in electric field at the interface of Co-WS2 catalysts facilitates the electron transfer from Co to WS2, significantly reducing water dissociation energy and optimizing the Gibbs free energy of the entire reaction step for HER. Besides, the self-supported catalysts of Co-WS2 nanoparticles confining 1D nanofibers exhibit an increased number of active sites. As expected, the heterostructure Co-WS2 catalysts exhibit remarkable HER activity with an overpotential of 113 mV to reach 10 mA cm-2 and stability with 30 h catalyzing at 23 mA cm-2. This work can provide an avenue for designing highly efficient catalysts applicable to the field of energy storage and conversion.

7.
Front Immunol ; 15: 1335112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476236

RESUMEN

Background: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease globally, with the potential to progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. Given the absence of effective treatments to halt its progression, novel molecular approaches to the NAFLD diagnosis and treatment are of paramount importance. Methods: Firstly, we downloaded oxidative stress-related genes from the GeneCards database and retrieved NAFLD-related datasets from the GEO database. Using the Limma R package and WGCNA, we identified differentially expressed genes closely associated with NAFLD. In our study, we identified 31 intersection genes by analyzing the intersection among oxidative stress-related genes, NAFLD-related genes, and genes closely associated with NAFLD as identified through Weighted Gene Co-expression Network Analysis (WGCNA). In a study of 31 intersection genes between NAFLD and Oxidative Stress (OS), we identified three hub genes using three machine learning algorithms: Least Absolute Shrinkage and Selection Operator (LASSO) regression, Support Vector Machine - Recursive Feature Elimination (SVM-RFE), and RandomForest. Subsequently, a nomogram was utilized to predict the incidence of NAFLD. The CIBERSORT algorithm was employed for immune infiltration analysis, single sample Gene Set Enrichment Analysis (ssGSEA) for functional enrichment analysis, and Protein-Protein Interaction (PPI) networks to explore the relationships between the three hub genes and other intersecting genes of NAFLD and OS. The distribution of these three hub genes across six cell clusters was determined using single-cell RNA sequencing. Finally, utilizing relevant data from the Attie Lab Diabetes Database, and liver tissues from NASH mouse model, Western Blot (WB) and Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) assays were conducted, this further validated the significant roles of CDKN1B and TFAM in NAFLD. Results: In the course of this research, we identified 31 genes with a strong association with oxidative stress in NAFLD. Subsequent machine learning analysis and external validation pinpointed two genes: CDKN1B and TFAM, as demonstrating the closest correlation to oxidative stress in NAFLD. Conclusion: This investigation found two hub genes that hold potential as novel targets for the diagnosis and treatment of NAFLD, thereby offering innovative perspectives for its clinical management.


Asunto(s)
Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Genes cdc , Perfilación de la Expresión Génica , Biomarcadores
8.
Zhongguo Gu Shang ; 37(2): 153-8, 2024 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-38425066

RESUMEN

OBJECTIVE: To explore the potential value of three-dimensional fast spin echo(3D-SPACE) combined with multilayer spiral CT (MSCT) in the diagnosis of knee cruciate ligament injury, to provide a new direction for the optimization of subsequent clinical diagnosis. METHODS: A total of 120 patients with knee cruciate ligament injury were treated from April 2020 to April 2021, aged from 21 to 68 with an average of(41.52±4.13) years old. For all patients, separate MSCT scanner scans, 3D-SPACE sequence scans alone and 3D-SPACE sequence combined with MSCT scans were used. The injury and classification of the anterior and posterior cruciate ligament of the knee were compared, the length of the anterior-medial bundle and posterolateral bundle and its angle of the knee with the horizontal plane were observed, the diagnostic value of 3 diagnostic methods in knee cruciate ligament injury were determined. RESULTS: There was no significant difference between the 3D-SPACE sequence scan alone and the MSCT test alone on the total diagnostic rate and grading total diagnostic rate(P>0.05). The total diagnostic rate and grading total diagnostic rate of 3D-SPACE scan combined with MSCT were significantly higher than those of 3D-SPACE scan or MSCT alone(P<0.05). The 3D-SPACE sequence scan alone and the MSCT detection alone had no significant difference in the measurement values related to the anterior and posterior cruciate ligaments of the knee joint(P>0.05). 3D-SPACE sequence scanning combined with MSCT detection on the knee joint anterior and posterior cruciate ligament related measurements were significantly higher than the 3D-SPACE sequence scan or MSCT detection alone(P<0.05). The area under the ROC curve estimated by 3D-SPACE sequence scanning combined with MSCT was 0.960, which was significantly higher than that of 3D-SPACE sequence scanning and MSCT alone evaluating the area under the ROC curve line of 0.756 and 0.795. The combined 3D-SPACE sequence scanning and 3D-SPACE sequence scanning MSCT analysis and prediction models were statistically different(Z=2.236, P<0.05), and MSCT alone and 3D-SPACE sequence scanning combined with MSCT analysis and prediction models were statistically different(Z=2.653, P<0.05). CONCLUSION: The application of 3D-SPACE sequence combined with MSCT scanning for knee cruciate ligament injury can improve the diagnosis rate of patients with knee cruciate ligament injury.It can be used as a diagnostic tool for patients with knee cruciate ligament injury and is worthy of clinical application.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Traumatismos de la Rodilla , Ligamento Cruzado Posterior , Traumatismos de los Tejidos Blandos , Humanos , Adulto , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Artroscopía , Traumatismos de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/diagnóstico por imagen , Ligamento Cruzado Posterior/lesiones , Tomografía Computarizada Espiral , Lesiones del Ligamento Cruzado Anterior/diagnóstico por imagen
9.
Cell Rep ; 43(3): 113905, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38446660

RESUMEN

Motivation-driven mating is a basic affair for the maintenance of species. However, the underlying molecular mechanisms that control mating motivation are not fully understood. Here, we report that NRG1-ErbB4 signaling in the medial amygdala (MeA) is pivotal in regulating mating motivation. NRG1 expression in the MeA negatively correlates with the mating motivation levels in adult male mice. Local injection and knockdown of MeA NRG1 reduce and promote mating motivation, respectively. Consistently, knockdown of MeA ErbB4, a major receptor for NRG1, and genetic inactivation of its kinase both promote mating motivation. ErbB4 deletion decreases neuronal excitability, whereas chemogenetic manipulations of ErbB4-positive neuronal activities bidirectionally modulate mating motivation. We also identify that the effects of NRG1-ErbB4 signaling on neuronal excitability and mating motivation rely on hyperpolarization-activated cyclic nucleotide-gated channel 3. This study reveals a critical molecular mechanism for regulating mating motivation in adult male mice.


Asunto(s)
Motivación , Transducción de Señal , Ratones , Masculino , Animales , Neuronas/metabolismo , Receptor ErbB-4/metabolismo , Amígdala del Cerebelo/metabolismo , Neurregulina-1/metabolismo
10.
Cell Death Discov ; 10(1): 107, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429284

RESUMEN

The cytoplasmic pattern recognition receptor, absent in melanoma 2 (AIM2), detects cytosolic DNA, activating the inflammasome and resulting in pro-inflammatory cytokine production and pyroptotic cell death. Recent research has illuminated AIM2's contributions to PANoptosis and host defense. However, the role of AIM2 in acetaminophen (APAP)-induced hepatoxicity remains enigmatic. In this study, we unveil AIM2's novel function as a negative regulator in the pathogenesis of APAP-induced liver damage in aged mice, independently of inflammasome activation. AIM2-deficient aged mice exhibited heightened lipid accumulation and hepatic triglycerides in comparison to their wild-type counterparts. Strikingly, AIM2 knockout mice subjected to APAP overdose demonstrated intensified liver injury, compromised mitochondrial stability, exacerbated glutathione depletion, diminished autophagy, and elevated levels of phosphorylated c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). Furthermore, our investigation revealed AIM2's mitochondrial localization; its overexpression in mouse hepatocytes amplified autophagy while dampening JNK phosphorylation. Notably, induction of autophagy through rapamycin administration mitigated serum alanine aminotransferase levels and reduced the necrotic liver area in AIM2-deficient aged mice following APAP overdose. Mechanistically, AIM2 deficiency exacerbated APAP-induced acute liver damage and inflammation in aged mice by intensifying oxidative stress and augmenting the phosphorylation of JNK and ERK. Given its regulatory role in autophagy and lipid peroxidation, AIM2 emerges as a promising therapeutic target for age-related acute liver damage treatment.

11.
Med Oncol ; 41(3): 75, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381181

RESUMEN

Lenvatinib is a multitargeted tyrosine kinase inhibitor capable of promoting apoptosis, suppressing angiogenesis, inhibiting tumor cell proliferation, and modulating the immune response. In multiple cancer types, lenvatinib has presented manageable safety and is currently approved as an effective first-line therapy. However, with the gradual increase in lenvatinib application, the inevitable progression of resistance to lenvatinib is becoming more prevalent. A series of recent researches have reported the mechanisms underlying the development of lenvatinib resistance in tumor therapy, which are related to the regulation of cell death or proliferation, histological transformation, metabolism, transport processes, and epigenetics. In this review, we aim to outline recent discoveries achieved in terms of the mechanisms and potential predictive biomarkers of lenvatinib resistance as well as to summarize untapped approaches available for improving the therapeutic efficacy of lenvatinib in patients with various types of cancers.


Asunto(s)
Apoptosis , Epigénesis Genética , Compuestos de Fenilurea , Quinolinas , Humanos , Biomarcadores , Proliferación Celular
12.
Elife ; 122024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277211

RESUMEN

Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than fivefold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here, we sought to define the roles of PAX1 and newly identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); p=7.07E-11, OR = 1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wild-type. By genetic targeting we found that wild-type Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, the latter suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2 or tamoxifen treatment significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a PAX1-COL11a1-MMP3 signaling axis in spinal chondrocytes.


Adolescent idiopathic scoliosis (AIS) is a twisting deformity of the spine that occurs during periods of rapid growth in children worldwide. Children with severe cases of AIS require surgery to stop it from getting worse, presenting a significant financial burden to health systems and families. Although AIS is known to cluster in families, its genetic causes and its inheritance pattern have remained elusive. Additionally, AIS is known to be more prevalent in females, a bias that has not been explained. Advances in techniques to study the genetics underlying diseases have revealed that certain variations that increase the risk of AIS affect cartilage and connective tissue. In humans, one such variation is near a gene called Pax1, and it is female-specific. The extracellular matrix is a network of proteins and other molecules in the space between cells that help connect tissues together, and it is particularly important in cartilage and other connective tissues. One of the main components of the extracellular matrix is collagen. Yu, Kanshour, Ushiki et al. hypothesized that changes in the extracellular matrix could affect the cartilage and connective tissues of the spine, leading to AIS. To show this, the scientists screened over 100,000 individuals and found that AIS is associated with variants in two genes coding for extracellular matrix proteins. One of these variants was found in a gene called Col11a1, which codes for one of the proteins that makes up collagen. To understand the relationship between Pax1 and Col11a1, Yu, Kanshour, Ushiki et al. genetically modified mice so that they would lack the Pax1 gene. In these mice, the activation of Col11a1 was reduced in the mouse spine. They also found that the form of Col11a1 associated with AIS could not suppress the activation of a gene called Mmp3 in mouse cartilage cells as effectively as unmutated Col11a1. Going one step further, the researchers found that lowering the levels of an estrogen receptor altered the activation patterns of Pax1, Col11a1, and Mmp3 in mouse cartilage cells. These findings suggest a possible mechanism for AIS, particularly in females. The findings of Yu, Kanshour, Ushiki et al. highlight that cartilage cells in the spine are particularly relevant in AIS. The results also point to specific molecules within the extracellular matrix as important for maintaining proper alignment in the spine when children are growing rapidly. This information may guide future therapies aimed at maintaining healthy spinal cells in adolescent children, particularly girls.


Asunto(s)
Escoliosis , Masculino , Animales , Niño , Ratones , Humanos , Femenino , Adolescente , Escoliosis/genética , Metaloproteinasa 3 de la Matriz/genética , Columna Vertebral , Factores de Transcripción/genética , Colágeno/genética , Variación Genética , Colágeno Tipo XI/genética
13.
Life Sci ; 338: 122396, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171413

RESUMEN

Lung adenocarcinoma (LUAD) is highly lethal tumor; understanding immune response is crucial for current effective treatment. Research investigated immunogenic cell death (ICD) impact on LUAD through 75 ICD-related genes which encompass cell damage, endoplasmic reticulum stress, microenvironment, and immunity. Transcriptome data and clinical info were analyzed, revealing two ICD-related clusters: B, an immune osmotic subgroup, had better prognosis, stronger immune signaling, and higher infiltration, while A represented an immune-deficient subgroup. Univariate Cox analysis identified six prognostic genes (AGER, CD69, CD83, CLEC9A, CTLA4, and NT5E), forming a validated risk score model. It was validated across datasets, showing predictive performance. High-risk group had unfavorable prognosis, lower immune infiltration, and higher chemotherapy sensitivity. Conversely, low-risk group had better prognosis, higher immune infiltration, and favorable immunotherapy response. The key gene NT5E was examined via immunohistochemistry, with higher expression linked to poorer prognosis. NT5E was predominantly expressed in B cells, fibroblasts, and endothelial cells, correlated with immune checkpoints. These outcomes suggest that NT5E can serve as a LUAD therapeutic target. The study highlights gene predictive value, offers an efficient tumor assessment tool, guides clinical treatment strategies, and identifies NT5E as therapeutic target for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Células Endoteliales , Muerte Celular Inmunogénica , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Inmunoterapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Microambiente Tumoral
14.
J Leukoc Biol ; 115(4): 633-646, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38066571

RESUMEN

Oncolytic virotherapy is an innovative approach for cancer treatment. However, recruitment of myeloid-derived suppressor cells (MDSCs) into the tumor microenvironment (TME) after oncolysis-mediated local inflammation leads to tumor resistance to the therapy. Using the murine malignant mesothelioma model, we demonstrated that the in situ vaccinia virotherapy recruited primarily polymorphonuclear MDSCs (PMN-MDSCs) into the TME, where they exhibited strong suppression of cytotoxic T lymphocytes in a reactive oxygen species-dependent way. Single-cell RNA sequencing analysis confirmed the suppressive profile of PMN-MDSCs at the transcriptomic level and identified CXCR2 as a therapeutic target expressed on PMN-MDSCs. Abrogating PMN-MDSC trafficking by CXCR2-specific small molecule inhibitor during the vaccinia virotherapy exhibited enhanced antitumor efficacy in 3 syngeneic cancer models, through increasing CD8+/MDSC ratios in the TME, activating cytotoxic T lymphocytes, and skewing suppressive TME into an antitumor environment. Our results warrant clinical development of CXCR2 inhibitor in combination with oncolytic virotherapy.


Asunto(s)
Células Supresoras de Origen Mieloide , Viroterapia Oncolítica , Vaccinia , Animales , Ratones , Línea Celular Tumoral , Células Supresoras de Origen Mieloide/patología , Linfocitos T Citotóxicos , Microambiente Tumoral , Vaccinia/patología , Virus Vaccinia
15.
J Clin Invest ; 134(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37962965

RESUMEN

Adolescent idiopathic scoliosis (AIS) is the most common form of spinal deformity, affecting millions of adolescents worldwide, but it lacks a defined theory of etiopathogenesis. Because of this, treatment of AIS is limited to bracing and/or invasive surgery after onset. Preonset diagnosis or preventive treatment remains unavailable. Here, we performed a genetic analysis of a large multicenter AIS cohort and identified disease-causing and predisposing variants of SLC6A9 in multigeneration families, trios, and sporadic patients. Variants of SLC6A9, which encodes glycine transporter 1 (GLYT1), reduced glycine-uptake activity in cells, leading to increased extracellular glycine levels and aberrant glycinergic neurotransmission. Slc6a9 mutant zebrafish exhibited discoordination of spinal neural activities and pronounced lateral spinal curvature, a phenotype resembling human patients. The penetrance and severity of curvature were sensitive to the dosage of functional glyt1. Administration of a glycine receptor antagonist or a clinically used glycine neutralizer (sodium benzoate) partially rescued the phenotype. Our results indicate a neuropathic origin for "idiopathic" scoliosis, involving the dysfunction of synaptic neurotransmission and central pattern generators (CPGs), potentially a common cause of AIS. Our work further suggests avenues for early diagnosis and intervention of AIS in preadolescents.


Asunto(s)
Escoliosis , Animales , Humanos , Adolescente , Escoliosis/genética , Escoliosis/diagnóstico , Escoliosis/cirugía , Glicina/genética , Pez Cebra , Transmisión Sináptica
16.
Heliyon ; 9(11): e21307, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027859

RESUMEN

N6-methyladenosine (m6A) methylation of human immunodeficiency virus type 1 (HIV-1) RNA regulates viral replication, and the m6A of host RNA is affected by HIV-1 infection, but its global pattern and function are still unclear. In this study, we report that the number and position of m6A peaks in huge genes of human microglial HMC3 cells were modulated by a single cycle HIV-1 pseudotyped with VSV-G envelope glycoprotein infection using methylated RNA immunoprecipitation sequencing (MeRIP-seq). A conjoint analysis of MeRIP-seq and high-throughput sequencing for mRNA (RNA-seq) explored four groups of clearly classified genes, including 45 hyper-up (m6A-mRNA), 45 hyper-down, 120 hypo-up, and 54 hypo-down genes, in HIV-1 infected cells compared to uninfected ones. KEGG pathway analysis showed that these genes were mainly enriched in the Wnt and TNF signaling pathway, and cytokine-cytokine receptor interaction, which might be related to the immune response in HMC3 cells. And some of these genes might be associated with the pathway of axon guidance and neuroactive ligan-receptor interaction, which affect the neuronal state. However, the cognitive disorders caused by HIV-1 is associated with inflammatory changes that have not yet been well clarified. Furthermore, we confirmed the expression and m6A levels of four genes using RT-PCR and MeRIP-qPCR. Similar to the sequencing results, the expressions of these genes were significantly upregulated by HIV-1 infection. And the m6A level of IL-6 was downregulated, and those of HLA-B, CFB, and OLR1 were upregulated. These results suggest that HIV-1-induced changes in gene expression may be achieved through the regulation of methylation. Our study revealed the global m6A methylation and gene expression patterns under HIV-1 infection in human microglia, which might provide clues for understanding the interaction between HIV-1 and host cells and the cognitive disorders caused by HIV-1.

17.
Comput Struct Biotechnol J ; 21: 5212-5227, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928949

RESUMEN

E3 ubiquitin ligases (E3s) play a pivotal role in regulating the specificity of protein ubiquitination, and their significant functions as regulators of immune responses against tumors are attracting considerable interest. RBCK1-an RBR E3 ligase-is involved in immune regulation and tumor development. However, the potential effect of RBCK1 on glioma remains enigmatic. In the present study, we performed comprehensive analyses of multilevel data, which disclosed distribution characteristics of RBCK1 in pan-cancer, especially in glioma. Functional roles of RBCK1 were further confirmed using immunohistochemistry, cell biological assays, and xenograft experiments. Aberrant ascending of RBCK1 in multiple types of cancer was found to remodel the immunosuppressive microenvironment of glioma by regulating immunomodulators, cancer immunity cycles, and immune cell infiltration. Notably, the MES-like/RBCK1High cell population, a unique subset of cells in the microenvironment, suppressed T cell-mediated cell killing in glioma. Elevated expression levels of RBCK1 suggested a glioma subtype characterized by immunosuppression and hypo-responsiveness to immunotherapy but manifesting surprisingly increased responses to anti-angiogenic therapy. In conclusion, anti-RBCK1 target therapy might be beneficial for glioma treatment. Moreover, RBCK1 assisted in predicting molecular subtypes of glioma and response rates of patients to different clinical treatments, which could guide personalized therapy.

18.
Cell Commun Signal ; 21(1): 242, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723559

RESUMEN

BACKGROUND: Cancer-associated fibroblasts (CAFs) are critically involved in tumor progression by maintaining extracellular mesenchyma (ECM) production and improving tumor development. Cyclooxygenase-2 (COX-2) has been proved to promote ECM formation and tumor progression. However, the mechanisms of COX-2 mediated CAFs activation have not yet been elucidated. Therefore, we conducted this study to identify the effects and mechanisms of COX-2 underlying CAFs activation by tumor-derived exosomal miRNAs in lung adenocarcinoma (LUAD) progression. METHODS: As measures of CAFs activation, the expressions of fibroblasts activated protein-1 (FAP-1) and α-smooth muscle actin (α-SMA), the main CAFs markers, were detected by Western blotting and Immunohistochemistry. And the expression of Fibronectin (FN1) was used to analyze ECM production by CAFs. The exosomes were extracted by ultracentrifugation and exo-miRNAs were detected by qRT-PCR. Herein, we further elucidated the implicated mechanisms using online prediction software, luciferase reporter assays, co-immunoprecipitation, and experimental animal models. RESULTS: In vivo, a positive correlation was observed between the COX-2 expression levels in parenchyma and α-SMA/FN1 expression levels in mesenchyma in LUAD. However, PGE2, one of major product of COX-2, did not affect CAFs activation directly. COX-2 overexpression increased exo-miR-1290 expression, which promoted CAFs activation. Furthermore, Cullin3 (CUL3), a potential target of miR-1290, was found to suppress COX-2/exo-miR-1290-mediated CAFs activation and ECM production, consequently impeding tumor progression. CUL3 is identified to induce the Nuclear Factor Erythroid 2-Related Factor 2 (NFE2L2, Nrf2) ubiquitination and degradation, while exo-miR-1290 can prevent Nrf2 ubiquitination and increase its protein stability by targeting CUL3. Additionally, we identified that Nrf2 is direcctly bound with promoters of FAP-1 and FN1, which enhanced CAFs activation by promoting FAP-1 and FN1 transcription. CONCLUSIONS: Our data identify a new CAFs activation mechanism by exosomes derived from cancer cells that overexpress COX-2. Specifically, COX-2/exo-miR-1290/CUL3 is suggested as a novel signaling pathway for mediating CAFs activation and tumor progression in LUAD. Consequently, this finding suggests a novel strategy for cancer treatment that may tackle tumor progression in the future. Video Abstract.


Asunto(s)
Adenocarcinoma del Pulmón , Fibroblastos Asociados al Cáncer , Neoplasias Pulmonares , Animales , Ciclooxigenasa 2 , Factor 2 Relacionado con NF-E2 , Neoplasias Pulmonares/genética
19.
J Biomed Res ; 37(5): 340-354, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37750331

RESUMEN

Hepatoblastoma is the most frequent liver malignancy in children. HepG2 has been discovered as a hepatoblastoma-derived cell line and tends to form clumps in culture. Intriguingly, we observed that the addition of calcium ions reduced cell clumping and disassociated HepG2 cells. The calcium signal is in connection with a series of processes critical in the tumorigenesis. Here, we demonstrated that extracellular calcium ions induced morphological changes and enhanced the epithelial-mesenchymal transition in HepG2 cells. Mechanistically, calcium ions promoted HepG2 proliferation and migration by up-regulating the phosphorylation levels of focal adhesion kinase (FAK), protein kinase B, and p38 mitogen-activated protein kinase. The inhibitor of FAK or Ca 2+/calmodulin-dependent kinase Ⅱ (CaMKⅡ) reversed the Ca 2+-induced effects on HepG2 cells, including cell proliferation and migration, epithelial-mesenchymal transition protein expression levels, and phosphorylation levels of FAK and protein kinase B. Moreover, calcium ions decreased HepG2 cells' sensitivity to cisplatin. Furthermore, we found that the expression levels of FAK and CaMKⅡ were increased in hepatoblastoma. The group with high expression levels of FAK and CaMKⅡ exhibited significantly lower ImmunoScore as well as CD8 + T and NK cells. The expression of CaMKⅡ was positively correlated with that of PDCD1 and LAG3. Correspondingly, the expression of FAK was negatively correlated with that of TNFSF9, TNFRSF4, and TNFRSF18. Collectively, extracellular calcium accelerates HepG2 cell proliferation and migration via FAK and CaMKⅡ and enhances cisplatin resistance. FAK and CaMKⅡ shape immune cell infiltration and responses in tumor microenvironments, thereby serving as potential targets for hepatoblastoma.

20.
Inflamm Res ; 72(7): 1501-1512, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37351631

RESUMEN

OBJECTIVE: Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease. Src homology 2 domain containing protein tyrosine phosphatase (SHP2) is a member of the protein tyrosine phosphatases (PTPs) family. To date, relationship between SHP2 and SLE pathogenesis is not elucidated. METHOD: We measured plasma levels of SHP2 in 328 SLE patients, 78 RA patients, 80 SS patients and 79 healthy controls by ELISA, and discussed association of SHP2 in SLE patients, potential of plasma SHP2 as a SLE biomarker. Moreover, histological and serological changes were evaluated by flow cytometry, HE/Masson examination, immunofluorescence test in pristane-induced lupus mice after SHP2 inhibitor injection to reveal role of SHP2 in lupus development. RESULTS: Results indicated that SHP2 plasma levels were upregulated in SLE patients and correlated with some clinical, laboratory characteristics such as proteinuria, pyuria, and may be a potential biomarker for SLE. After SHP2 inhibitor treatment, hepatosplenomegaly and histological severity of the kidney in lupus mice were improved. SHP2 inhibitor reversed DCs, Th1, and Th17 cells differentiation and downregulated inflammatory cytokines (IL-4, IL-6, IL-10, IL-17A, IFN-γ and TNF-α) and autoantibodies (ANA, anti-dsDNA) production in pristane-lupus mice. CONCLUSION: In summary, SHP2 correlated with SLE pathogenesis and promoted the development of lupus.


Asunto(s)
Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Animales , Ratones , Terpenos/efectos adversos , Citocinas/metabolismo , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...