Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Fitoterapia ; 174: 105823, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38307137

RESUMEN

BACKGROUND: In recent years, sleep problems have emerged as a significant factor in the development of diseases that influence cognitive function. The inflammatory response may have a role in the neurobiological processes of sleep deprivation, resulting in impairment of memory and learning. Shenghui Decoction (SHD) is a classic formula in Chinese medicine used to treat forgetfulness and insomnia. However, it remains unclear whether the anti-inflammatory effects of SHD are specifically linked to the inhibition of P2X7R and p38MAPK. METHODS: Analysis of chemical constituents of Shenghui Decoction based on UPLC-Q-TOF-MS / MS. The learning and memory competency of the mice was assessed using the new object recognition and Morris water maze tests. The morphology of hippocampus neurons was observed using HE staining, and the expression of inflammatory factors was measured using ELISA and immunofluorescence. The expression of P2X7R and p38MAPK in the hippocampus was analyzed via real-time PCR and Western blotting. Additionally, the components absorbed into the bloodstream of SHD were analyzed. RESULTS: The study found that SHD contains 47 chemical constituents, including phenolic acids, flavonoids, iridoids, and triterpenoids. In addition, it was observed that SHD significantly improved the learning and memory abilities of the mice. SHD also improved the morphology of hippocampus neurons. The expression of inflammatory factors was decreased in the SHD-treated mice. Additionally, the expression of P2X7R and p38MAPK was decreased in the hippocampus of the SHD-treated mice. Fifteen prototype chemical constituents were detected in blood. CONCLUSIONS: The study suggests that SHD could be a viable treatment for cognitive impairments associated with brain inflammation. The therapeutic effects of SHD are likely due to its chemical components, including phenolic acids, flavonoids, iridoids, and triterpenoids. SHD can improve learning and memory impairment caused by sleep deprivation through the P2X7R/p38MAPK inflammatory signaling pathways.


Asunto(s)
Privación de Sueño , Triterpenos , Ratones , Animales , Privación de Sueño/tratamiento farmacológico , Privación de Sueño/complicaciones , Privación de Sueño/metabolismo , Neuroprotección , Cromatografía Liquida , Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Estructura Molecular , Hipocampo , Flavonoides/farmacología , Iridoides/farmacología , Triterpenos/farmacología , Aprendizaje por Laberinto
2.
J Ethnopharmacol ; 296: 115502, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35777606

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Suanzaoren Decoction (SZRD) is a traditional and classic prescription for the treatment of insomnia, with a history of more than 1,000 years. It replenishes blood components, calms the nerves, reduces fever and irritability. It is commonly used in the clinical treatment of chronic fatigue syndrome, cardiac neurosis, and menopausal syndromes. Modern pharmacological studies have shown that it improves cognitive impairment; however, its mechanism of action remains unclear. AIM OF THE STUDY: This study preliminarily investigated the potential bioactive components and mechanism of SZRD in improving cognitive impairment by exploring network pharmacology, molecular docking, and conducting in vivo experiments. MATERIALS AND METHODS: The components of various Chinese herbs in SZRD and their disease-related targets were identified through network pharmacology and literature. Gene ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of intersection targets were performed using the relevant database. Next, the "Components-Targets-Pathways" (C-T-P) and "Protein-Protein interaction" networks were constructed using the enrichment analysis results to further identify potential pathways, bioactive components, and hub genes. At the same time, molecular docking was used to further distinguish the key bioactive components and genes of SZRD responsible for improving cognitive impairment. Finally, the potential mechanism of action was further analysed and verified using in vivo experiments. RESULTS: A total of 117 potential active components and 138 intersection targets were identified by network pharmacology screening. The key bioactive components, including calycosin, 5-Prenylbutein, licochalcone G, glypallichalcone, and ZINC189892, were identified by analysing the networks and molecular docking results. Hub genes included ACHE, CYP19A1, EGFR, ESR1, and ESR2. The oestrogen signalling pathway was the most important in the enrichment analysis. In vivo experiments further proved that SZRD could improve cognitive impairment by affecting the oestrogen signalling pathway and the expression of ACHE and CYP19A1. CONCLUSIONS: Network pharmacology and in vivo experiments demonstrate that SZRD improves cognitive impairment caused by sleep disturbance through estrogen receptor pathway, which provides a basis for its clinical application.


Asunto(s)
Disfunción Cognitiva , Medicamentos Herbarios Chinos , Disfunción Cognitiva/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Estrógenos , Humanos , Simulación del Acoplamiento Molecular , Privación de Sueño/tratamiento farmacológico
3.
Front Pharmacol ; 13: 857706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35330825

RESUMEN

As a prevalent medicinal liquor among Chinese people, a type of Chinese herbal spirit from Jing Brand Co., Ltd (CHS-J) is a newly developed health beverage with the health functions of anti-fatigue and immune enhancement. The researchers from the enterprise found that the contents of several components in CHS-J samples have been significantly decreasing during the stated storage period, as detected by the HPLC-UV method, which would make a great challenge for quality control of CHS-J. Furthermore, the chemical stability of CHS-J during the storage period is greatly challenged affected, especially in the environment of high temperature and light exposure. To systematically reveal the unstable components and promote the quality control of CHS-J, the chemical stability of CHS-J during the shelving storage period was characterized by the UPLC/Q-TOFMS-based metabolomics approach. First, the targeted and untargeted metabolomics approaches discovered the significantly changed components in CHS-J samples produced in different years. Furthermore, the accelerated tests of newly produced CHS samples and several authorized standards were conducted to validate the above results and elucidate the possible mechanisms underlying these chemical changes. Moreover, these chemical changes during the storage period had little influence on the anti-fatigue effect of CHS-J samples. These findings will offer new insight into the understanding of the chemical stability of CHS-J and will facilitate the quality control of CHS-J.

4.
Front Pharmacol ; 13: 823732, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295327

RESUMEN

Sleep deprivation is commonplace in modern society, Short periods of continuous sleep deprivation (SD) may negatively affect brain and behavioral function and may lead to vehicle accidents and medical errors. Tanshinone IIA (Tan IIA) is an important lipid-soluble component of Salvia miltiorrhiza, which could exert neuroprotective effects. The aim of this study was to investigate the mechanism of neuroprotective effect of Tan IIA on acute sleep deprivation-induced cognitive dysfunction in rats. Tan IIA ameliorated behavioral abnormalities in sleep deprived rats, enhanced behavioral performance in WMW and NOR experiments, increased hippocampal dendritic spine density, and attenuated atrophic loss of hippocampal neurons. Tan IIA enhanced the expression of CB1, PI3K, AKT, STAT3 in rat hippocampus and down-regulated the expression ratio of Bax to Bcl-2. These effects were inhibited by cannabinoid receptor 1 antagonist (AM251). In conclusion, Tan IIA can play a neuroprotective role by activating the CNR1/PI3K/AKT signaling pathway to antagonize apoptosis in the hippocampus and improve sleep deprivation-induced spatial recognition and learning memory dysfunction in rats. Our study suggests that Tan IIA may be a candidate for the prevention of sleep deprivation-induced dysfunction in spatial recognition and learning memory.

5.
Artículo en Inglés | MEDLINE | ID: mdl-30891080

RESUMEN

OBJECTIVE: To explore the mechanisms of the volatiles of Wendan granule (WDG) for the treatment of Alzheimer's disease, network pharmacology method integrating absorption, distribution, metabolism, and excretion (ADME) screening, target fishing, network constructing, pathway analysing, and correlated diseases prediction was applied. METHODS: Twelve small molecular compounds of WDG were selected as the objects from 74 volatiles with the relative abundances above 2 %, and their ADME parameters were collected from Traditional Chinese Medicine Systems Pharmacology platform (TCMSP), and the corresponding targets, genes, pathways, and diseases were predicted according to the data provided by TCMSP, DrugBank, Uniport, and the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Then the related pathways and correlation analysis were explored by the Kyoto Encyclopedia and Genomes (KEGG) database. Finally, the networks of compound target, target pathway, and pathway disease of WDG were constructed by Cytoscape software. RESULTS: Twelve compounds interacted with 49 targets, of which top three targets were gamma-aminobutyric acid receptor subunit alpha-1 (GABRA1), prostaglandin G/H synthase 2 (PGHS-2), and sodium-dependent noradrenaline transporter. Interestingly, these targets were highly associated with depression, insomnia, and Alzheimer's disease that mainly corresponded to mental and emotional illnesses. CONCLUSION: The integrated network pharmacology method provides precise probe to illuminate the molecular mechanisms of the main volatiles of WDG for relieving senile dementia related syndromes, which will also facilitate the application of traditional Chinese medicine as an alternative or supplementary to conventional treatments of AD, as well as follow-up studies such as upgrading the quality standard of clinically applied herbal medicine and novel drug development.

6.
J Geriatr Psychiatry Neurol ; 32(3): 152-163, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30885037

RESUMEN

BACKGROUND: Alzheimer disease (AD) is the most common type of dementia which is becoming a primary problem in the present society, but it lacks effective treatment methods and means of AD. Tanshinone IIA (Tan IIA) has been reported to have neuroprotective effects to restrain the Aß25-35-mediated apoptosis. However, few studies try to understand how Aß1-42 affects hyperphosphorylation of tau and how Tan IIA regulates this process at the molecular level. METHODS: Fifty male Sprague-Dawley rats were randomly divided into 5 groups and infused through the lateral ventricle with Aß1-42 except the control group. Then the rats were treated with Tan IIA through intragastric administration for 4 weeks. After the ability of learning and memory being measured, histomorphological examination and Western blot were used to detect the possible mechanism in the AD-associated model rats. RESULTS: We observed that Aß1-42 infusion could induce spatial learning and memory deficits in rats. Simultaneously, Aß1-42 also could reduce the neuron in cornu ammonis 1 and dentate gyrus of hippocampus, as well as increase the levels of cleaved caspase 3, hyperphosphorylated tau at the sites Ser396, Ser404, and Thr205 with enhancing staining of black granules in brain. We also found that Aß1-42 could increase the activity of extracellular signal-regulated protein kinase (ERK) and glycogen synthase kinase-3ß (GSK-3ß). Meanwhile, these phenomena could be ameliorated when Tan IIA was used. CONCLUSION: We concluded that Tan IIA might have neuroprotective effect and improving learning and memory ability to be a viable candidate in AD therapy with mechanisms involving the ERK and GSK-3ß signal pathway.


Asunto(s)
Abietanos/uso terapéutico , Antiinflamatorios no Esteroideos/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Aprendizaje Espacial/efectos de los fármacos , Abietanos/farmacología , Animales , Antiinflamatorios no Esteroideos/farmacología , Modelos Animales de Enfermedad , Humanos , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...