Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(2): e0336823, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38197657

RESUMEN

Terrestrial plants can influence the growth and health of adjacent plants through interspecific interaction. Here, the mechanisms of interspecific plant interaction on microbial function and nutrient utilization in the plant-soil interface (non-rhizosphere soil, rhizosphere soil, and root) were studied by soybean- and potato-poplar intercropping. First, metagenomics showed that soybean- and potato-poplar intercropping influenced the composition and co-occurrence networks of microbial communities in different ecological niches, with higher stability of the microbial community in soybean intercropping. Second, the gene abundance related to carbon metabolism, nitrogen cycling, phosphorus cycling, and sulfur cycling was increased at the poplar-soil interface in soybean intercropping. Moreover, soybean intercropping increased soil nutrient content and enzymatic activity. It showed higher metabolic potential in nutrient metabolism and transportation. Third, functional microorganisms that influenced nutrient cycling and transportation in different intercropping have been identified, namely Acidobacteria, Sphingomonas, Gemmatimonadaceae, Alphaproteobacteria, and Bradyrhizobium. Therefore, intercropping can construct microbial communities to alter metabolic functions and improve nutrient cycling and absorption. Interspecific plant interactions to influence the microbiome were revealed, opening up a new way for the precise regulation of plant microbiome.IMPORTANCEPoplar has the characteristics of wide distribution, strong adaptability, and fast growth, which is an ideal tree species for timber forest. In this study, metagenomics and elemental analysis were used to comprehensively reveal the effects of interspecific plant interactions on microbial communities and functions in different ecological niches. It can provide a theoretical basis for the development and application of the precise management model in poplar.


Asunto(s)
Microbiota , Suelo , Suelo/química , Agricultura , Glycine max , Bacterias/genética , Microbiología del Suelo
2.
Plant Physiol Biochem ; 200: 107802, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37269820

RESUMEN

In the age of nanotechnological advancement, carbon nanotubes (CNTs) are drawing global attention. However, few studies have been published on the crop growth responses to CNTs in heavy metal(loid)s contaminated environments. A pot experiment was conducted to assess the effect of multi-walled carbon nanotubes (MWCNTs) on plant development, oxidative stress, and heavy metal(loid)s behavior in a corn-soil system. Corn (Zea mays L.) seedlings were cultivated in soil containing Cadmium (Cd) and Arsenic (As) that had been primed with 0, 100, 500, and 1000 mg kg-1 MWCNTs. The application of 100 and 500 mg kg-1 MWCNTs improved shoot length by 6.45% and 9.21% after 45 days, respectively. Total plant dry biomass increased by 14.71% when treated with 500 mg kg-1 MWCNTs but decreased by 9.26% when exposed to 1000 mg kg-1 MWCNTs. MWCNTs treatment did not affect Cd accumulation in plants. On the other hand, the bio-concentration factor of As was inversely associated with plant growth (p < 0.05), which was declined in MWCNTs treatments. Oxidative stress was aggravated when plants were exposed to MWCNTs, thus activating the antioxidant enzymes system in the corn. In contrast, TCLP-extractable Cd and As in soil significantly decreased than in the control. Additionally, the soil nutrients were changed under MWCNTs treatments. Our findings also revealed that a particular concentration of MWCNTs can mitigate the toxicity of Cd and As in corn seedlings. Therefore, these results suggest the prospective application of CNTs in agricultural production, ensuring environmental and soil sustainability.


Asunto(s)
Arsénico , Metales Pesados , Nanotubos de Carbono , Contaminantes del Suelo , Cadmio/toxicidad , Nanotubos de Carbono/toxicidad , Zea mays , Suelo , Metales Pesados/toxicidad , Estrés Oxidativo , Plantones , Desarrollo de la Planta , Contaminantes del Suelo/toxicidad
3.
Small ; 18(46): e2204495, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36148833

RESUMEN

A cost-effective and high-efficiency photoelectrochemical (PEC) water splitting system based on colloidal quantum dots (QDs) represents a potential solar-to-hydrogen (STH) conversion technology to achieve future carbon neutrality. Herein, a self-biased PEC cell consisting of BiVO4 photoanode and Cu2 O photocathode both decorated with Zn-doped CuInS2 (ZCIS) QDs is successfully fabricated. The intrinsic charge dynamics of the photoelectrodes are efficiently optimized via rational engineering of the surface ligands capped on QDs with controllable chain lengths and binding affinities to the metal oxide electrodes. It is demonstrated that the short-chain monodentate 1-dodecanethiol ligands are beneficial to ZCIS QDs for suppressing charge recombination, which enables the construction of tight heterojunction with coupled metal oxide electrodes, leading to effective photo-induced charge transfer/injection for enhanced PEC performance. The QD decorated BiVO4 and Cu2 O photoelectrodes in pairs demonstrate a self-biased PEC water splitting process, delivering an STH efficiency of 0.65% with excellent stability under AM 1.5 G one-sun illumination. The results highlight the significance of synergistic ligand and heterojunction engineering to build highly efficient and robust QDs-based PEC devices for self-biased solar water splitting.

4.
Chemosphere ; 305: 135488, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35764116

RESUMEN

Microorganisms affect cadmium (Cd) extraction by hyperaccumulators to varying degrees, but the potential mechanism has not been completely studied. Here, two plant growth-promoting bacteria (PGPB, Bacillus paranthracis NT1 and Bacillus megaterium NCT-2) were assessed for their influence on Cd uptake by Solanum nigrum L. and their influence mechanisms. The results showed that both two strains could regulate phytohormones secretion, alleviate oxidative stress and promote S. nigrum growth when exposed to Cd (dry weight was significantly increased by 21.51% (strain NCT-2) and 21.23% (strain NT1) compared with the control, respectively). Additionally, strain NCT-2 significantly elevated the translocation factor (TF) and bioconcentration factor (BCF), and thus significantly facilitated total Cd uptake by 41.80% of S. nigrum, whereas strain NT1 significantly reduced the BCF and TF, resulting in insignificant effect on total Cd uptake of S. nigrum compared with the control. Results of qPCR illustrated that the two strains influenced the detoxification of Cd in S. nigrum by affecting the expression of antioxidant enzyme genes and gene PDR2. Moreover, the differential expression of heavy metal transport genes IRT1 and HMA may lead to the difference of Cd accumulation in S. nigrum. Principal component analysis and Pearson correlation coefficient analysis further verified the positive roles of salicylic acid and indole-3-acetic acid on Cd detoxification of S. nigrum, and the positive correlation relationship between transportation of Cd from underground to shoot, plant biomass and Cd uptake. Altogether, our results demonstrated that these two PGPB have great potential in helping plants detoxify Cd and could provide insights into the mechanism of PGPB-assisted phytoremediation of Cd-contaminated soil.


Asunto(s)
Bacillus , Contaminantes del Suelo , Solanum nigrum , Bacillus/genética , Bacillus/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Cadmio/análisis , Raíces de Plantas/metabolismo , Suelo , Contaminantes del Suelo/análisis , Solanum nigrum/metabolismo
5.
Chemosphere ; 300: 134580, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35421442

RESUMEN

Nitrate is the main nitrogen source for plant growth, but it can also pollute the environment. A major cause of soil secondary salinization is the rising level of nitrates in the soil, which poses a threat to the sustainability and fertility of global greenhouse soils. Herein, Bacillus megaterium NCT-2 was used as a microbial agent to remove nitrate by bioaugmentation, and the remediation efficiency of secondary salinized soil in different degrees was evaluated. The findings showed that the highest nitrate removal rate of 62.76% was in a medium degree of secondary salinized soil. Moreover, the results of 16S rRNA high-throughput sequencing and quantitative real-time PCR (qPCR) demonstrated that NCT-2 agent reduced the microbial diversity, increased the microbial community stability, and changed the composition and function of the microbial community were changed by NCT-2 agent in all districts soil. Further analysis demonstrated that the NCT-2 bacterial agent significantly increased the key enzyme genes of the assimilation pathway (nitrite reductase gene NasD, 87-404 times, and glutamine reduction enzyme gene GlnA, 13-52 times) and dissimilatory reduction to ammonium (DNRA) (nitrate reductase gene NarG, 14-56 times) in different degrees of secondary salinized soils. This proved that NCT-2 agent could promote the nitrate assimilation and the dissimilation and reduction to ammonium in secondary salinized soil. Thus, the current findings suggested that the NCT-2 agent has a significant potential for reducing excessive nitrate levels in secondary salinized soil. The remediation efficiency was related to the microbial community composition and the degree of secondary salinization. This study could provide a theoretical basis for the remediation of secondary salinized soil in the future.


Asunto(s)
Compuestos de Amonio , Nitratos , Biodegradación Ambiental , Nitratos/metabolismo , Óxidos de Nitrógeno , ARN Ribosómico 16S/genética , Suelo , Microbiología del Suelo
6.
ChemSusChem ; 15(10): e202200346, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35319829

RESUMEN

"Green" colloidal quantum dots (QDs)-based photoelectrochemical (PEC) cells are promising solar energy conversion systems possessing environmental friendliness, cost-effectiveness, and highly efficient solar-to-hydrogen conversion. In this work, eco-friendly AgInSe (AISe)/ZnSe core/shell QDs with wurtzite (WZ) phase were synthesized for solar hydrogen production. It was demonstrated that appropriately engineering the ZnSe shell thickness resulted in effective surface defects passivation of the AISe core for suppressed charge recombination in the consequent core/shell AISe/ZnSe QDs. The fabricated environmentally friendly core/shell QDs-based PEC device exhibited improved photo-excited electrons extraction efficiency under optimized conditions and delivered a maximum photocurrent density as high as 7.5 mA cm-2 and long-term durability under standard AM 1.5G illumination (100 mW cm-2 ). These findings suggest that AISe/ZnSe core/shell QDs with tailored optoelectronic properties are potential light sensitizers for eco-friendly, cost-effective, and highly efficient solar energy conversion applications.

7.
J Hazard Mater ; 423(Pt B): 127168, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34534808

RESUMEN

Cadmium (Cd) triggers molecular alterations in plants, perturbs metabolites and damages plant growth. Therefore, understanding the molecular mechanism underlying the Cd tolerance in plants is necessary for assessing the persistent environmental impact of Cd. In this study, Solanum nigrum was selected as the test plant to investigate changes in biomass, Cd translocation, cell ultrastructure, metabolites and genes under hydroponic conditions. The results showed that the plant biomass was significantly decreased under Cd stress, and the plant has a stronger Cd transport capability. Transmission electron microscopy revealed that increased Cd concentration gradually damaged the plant organs (roots, stems and leaves) cell ultrastructure, as evidenced by swollen chloroplasts and deformed cell walls. Additionally, metabolomics analyses revealed that Cd stress mainly affected seven metabolism pathways, including 19 differentially expressed metabolites (DEMs). Moreover, 3908 common differentially expressed genes (DEGs, 1049 upregulated and 2859 downregulated) were identified via RNA-seq among five Cd treatments. Meanwhile, conjoint analysis found several DEGs and DEMs, including laccase, peroxidase, D-fructose, and cellobiose etc., are associated with cell wall biosynthesis, implying the cell wall biosynthesis pathway plays a critical role in Cd detoxification. Our comprehensive investigation using multiple approaches provides a molecular-scale perspective on plant response to Cd stress.


Asunto(s)
Solanum nigrum , Cadmio/toxicidad , Metabolómica , Raíces de Plantas , Solanum nigrum/genética , Transcriptoma
8.
J Hazard Mater ; 423(Pt A): 126947, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34481400

RESUMEN

Carbon nanotubes can potentially stimulate phytoremediation of heavy metal contaminated soil by promoting plant biomass and root growth. Yet, the regulating mechanism of carbon nanotubes on the rhizosphere microenvironment and their potential ecological risks remain poorly characterized. The purpose of this study was to systematically evaluate the effects of multi-walled carbon nanotubes (MCNT) on the diversity and structure of rhizosphere soil bacterial and fungal communities, as well as soil enzyme activities and nutrients, in Solanum nigrum L. (S. nigrum)-soil system. Here, S. nigrum were cultivated in heavy metal(loid)s contaminated soils applied with MCNT (100, 500, and 1000 mg kg-1 by concentration, none MCNT addition as control) for 60 days. Our results demonstrated more significant urease, sucrase, and acid phosphatase activities in MCNT than in control soils, which benefit to promoting plant growth. Also, there were significant reductions in available nitrogen and available potassium contents with the treatment of MCNT, while the organic carbon and available phosphorus were not affected by MCNT application. Notably, the alpha diversity of bacterial and fungal communities in the MCNT treatments did not significantly vary relative to control. However, the soil microbial taxonomic compositions were changed under the application of MCNT. Compared to the control, MCNT application increased the relative abundances of the Micrococcaceae family, Solirubrobacteraceae family, and Conexibacter genus, which were positively correlated with plant growth. In addition, the non-metric multidimensional scaling (NMDS) analysis revealed that the community structure of bacterial and fungal communities did not significantly change among all the treatments, and bacterial community structure was significantly correlated with soil organic carbon. At the same time, sucrase activity had the highest relation to fungal community structure. This study highlighted soil microbes have strong resistance and adaptation ability to carbon nanotubes with existence of plants, and revealed linkage between the rhizosphere microenvironment and plant growth, which well improved our understanding of carbon nanotubes in heavy metal phytoremediation.


Asunto(s)
Microbiota , Nanopartículas , Nanotubos de Carbono , Contaminantes del Suelo , Nutrientes , Rizosfera , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
9.
Opt Express ; 29(21): 33456-33466, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34809157

RESUMEN

Strong absorption of the full spectrum of sunlight at high temperatures is desired for photothermal devices and thermophotovoltaics. Here, we experimentally demonstrate a thin-film broadband absorber consisting of a vanadium nitride (VN) film and a SiO2 anti-reflective layer. Owing to the intrinsic high loss of VN, the fabricated absorber exhibits high absorption over 90% in the wide range of 400-1360 nm. To further enhance the near-infrared absorption, we also propose a metamaterial absorber by depositing patterned VN square patches on the thin-film absorber. An average absorption of 90.4% over the range of 400-2500 nm is achieved due to the excitation of broad electric dipole resonance. Both thin-film and metamaterial absorbers are demonstrated to possess excellent incident angle tolerances (up to 60°) and superior thermal stability at 800 ℃. The proposed refractory VN absorbers may be potentially used for solar energy harvesting, thermal emission, and photodetection.

10.
ACS Appl Mater Interfaces ; 13(42): 50046-50056, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34637273

RESUMEN

Broadening light absorption and improving charge carrier separation are very critical to boost the water splitting efficiency in photoelectrochemical (PEC) systems. We herein reported a heterostructured photoanode consisting of BiVO4 and eco-friendly, near-infrared (NIR) CuInSeS@ZnS core-shell quantum dots (QDs) for PEC water oxidation. The decoration of core-shell QDs concurrently extends the absorption range of BiVO4 from the ultraviolet-visible to NIR region and promotes the effective separation and transfer of photo-excited electrons and holes. Without any sacrificial agents and co-catalysts, the as-fabricated NIR core-shell QDs/BiVO4 heterostructured photoanodes exhibit an approximately fourfold higher photocurrent density than that of the bare BiVO4, up to 3.17 mA cm-2 at 1.23 V versus the reversible hydrogen electrode. It is revealed that both a suitable band alignment and an intimate interfacial junction between QDs and BiVO4 are the main factors that result in enhanced charge separation and transfer efficiencies. We also highlight that the NIR CISeS QDs passivated with a ZnS shell can suppress the non-radiative recombination and enhance the stability of the QD photoanodes for optimized PEC performance. This work provides a facile and effective approach to boost the water oxidation efficiency of semiconductor photoanodes via utilizing NIR core-shell QDs as a light sensitizer and charge carrier separator.

11.
Adv Sci (Weinh) ; 6(9): 1801967, 2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31065522

RESUMEN

Luminescent solar concentrators (LSCs) have attracted significant attention as promising solar energy conversion devices for building integrated photovoltaic (PV) systems due to their simple architecture and cost-effective fabrication. Conventional LSCs are generally comprised of an optical waveguide slab with embedded emissive species and coupled PV cells. Colloidal semiconductor quantum dots (QDs) have been demonstrated as efficient emissive species for high-performance LSCs because of their outstanding optical properties including tunable absorption and emission spectra covering the ultraviolet/visible to near-infrared region, high photoluminescence quantum yield, large absorption cross sections, and considerable photostability. However, current commonly used QDs for high-performance LSCs consist of highly toxic heavy metals (i.e., cadmium and lead), which are fatal to human health and the environment. In this regard, it is highly desired that heavy metal-free and environmentally friendly QD-based LSCs are comprehensively studied. Here, notable advances and developments of LSCs based on unary, binary, and ternary eco-friendly QDs are presented. The synthetic approaches, optical properties of these eco-friendly QDs, and consequent device performance of QD-based LSCs are discussed in detail. A brief outlook pointing out the existing challenges and prospective developments of eco-friendly QD-based LSCs is provided, offering guidelines for future device optimizations and commercialization.

12.
Ecotoxicol Environ Saf ; 174: 146-152, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30825737

RESUMEN

Ubiquitous dimethyl phthalate (DMP) has severely threatened environmental safety and the health of organisms. Therefore, it is necessary to degrade DMP, removing it from the environment. Microbiological degradation is an efficient and safe method for degrading DMP. In this study, the response of Arthrobacter QD 15-4 to DMP was investigated. The results showed that the growth of Arthrobacter QD 15-4 was not impacted by DMP and Arthrobacter QD 15-4 could degrade DMP. RNA-Seq and RT-qPCR results showed that DMP treatment caused some changes in the expression of key genes in Arthrobacter QD 15-4. The transcriptional expressions of pstSCAB and phoU were downregulated by DMP. The transcriptional expressions of potACD, gluBC, oppAB, pdhAB, aceAF, gltA were upregulated by DMP. The genes are mainly involved in regulating energy metabolism and ATP-binding cassette (ABC) transporters. The increasing of pyruvic acid and citrate in Arthrobacter QD 15-4 further supported the energy metabolism was improved by DMP. It was clearly shown that Arthrobacter QD 15-4 made response to dimethyl phthalate by regulating energy metabolism and ABC transporters.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Arthrobacter/metabolismo , Proteínas Bacterianas/metabolismo , Ácidos Ftálicos/metabolismo , Arthrobacter/efectos de los fármacos , Arthrobacter/crecimiento & desarrollo , Biodegradación Ambiental , Metabolismo Energético/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Ácidos Ftálicos/farmacología
13.
Ecotoxicol Environ Saf ; 167: 36-43, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30292974

RESUMEN

Dimethyl phthalate (DMP) is a ubiquitous pollutant that is very harmful to organisms due to its mutagenicity, teratogenicity and carcinogenicity. Pseudomonas fluorescens (P. fluorescens) is one of the most important bacteria in the environment. In this study, the response of P. fluorescens to DMP was investigated. It was found that DMP greatly inhibited the growth and glucose utilization of P. fluorescens when the concentration of DMP was ranged from 20 to 40 mg/l. The surface hydrophobicity and membrane permeability of P. fluorescens were also increased by DMP. DMP could lead to the deformations of cell membrane and the mis-opening of membrane channels. RNA-Seq and RT-qPCR results showed that the expression of some genes in P. fluorescens were altered, including the genes involved in energy metabolism, ATP-binding cassette (ABC) transporting and two-component systems. Additionally, the productions of lactic acid and pyruvic acid were reduced and the activity of hexokinase was inhibited in P. fluorescens by DMP. Clearly, the results suggested that DMP contamination could alter the biological function of P. fluorescens in the environment.


Asunto(s)
Ácidos Ftálicos/toxicidad , Pseudomonas fluorescens/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/genética , Relación Dosis-Respuesta a Droga , Regulación Bacteriana de la Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Mutágenos/toxicidad , Pseudomonas fluorescens/genética , Análisis de Secuencia de ARN , Transcriptoma
14.
Sci Total Environ ; 653: 212-222, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30408669

RESUMEN

Phthalic acid esters (PAEs), such as dimethyl phthalate (DMP) and dibutyl phthalate (DBP), are widely distributed as environmental pollutants. In this study, the effects of these chemicals were investigated in black soils using a metagenomics approach. The results clearly showed that DMP or DBP increased the abundance of genes involved in transcription, replication and repair in black soils. In addition, the abundances of genes associated with metabolic functions was improved following treatment with DMP or DBP, including those involved in lipid transport and metabolism, carbohydrate transport and metabolism, and energy production and conversion. There could be many reasons for these observed changes. First, the DMP or DBP treatments increased the abundances of genes associated with the LuxR family, the UvrABC repair system, DNA replication pathways, the RNA polymerase complex and base excision repair. Second, the abundances of genes associated with isocitrate lyase regulator (IclR) family transcriptional regulators, lipid metabolism and carbohydrate active enzymes (CAZys) were altered by the DMP or DBP treatments. Finally, the DMP or DBP treatments also increased the emission load of CO2 and altered the fluorescence intensity of humic acid. Therefore, the results of this study suggested that DMP and DBP contamination altered the abundances of genes associated with genetic information processing and improved the carbon metabolism in black soils.


Asunto(s)
Bacterias/efectos de los fármacos , Carbono/metabolismo , Genes Bacterianos/efectos de los fármacos , Ácidos Ftálicos/efectos adversos , Microbiología del Suelo , Contaminantes del Suelo/efectos adversos , Bacterias/genética , Bacterias/metabolismo , Ésteres/efectos adversos , Genes Bacterianos/genética , Suelo/química
15.
Sci Rep ; 8(1): 2605, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29422490

RESUMEN

Dibutyl phthalate (DBP) is well known as a high-priority pollutant. This study explored the impacts of DBP on the metabolic pathways of microbes in black soils in the short term (20 days). The results showed that the microbial communities were changed in black soils with DBP. In nitrogen cycling, the abundances of the genes were elevated by DBP. DBP contamination facilitated 3'-phosphoadenosine-5'-phosphosulfate (PAPS) formation, and the gene flux of sulfate metabolism was increased. The total abundances of ABC transporters and the gene abundances of the monosaccharide-transporting ATPases MalK and MsmK were increased by DBP. The total abundance of two-component system (TCS) genes and the gene abundances of malate dehydrogenase, histidine kinase and citryl-CoA lyase were increased after DBP contamination. The total abundance of phosphotransferase system (PTS) genes and the gene abundances of phosphotransferase, Crr and BglF were raised by DBP. The increased gene abundances of ABC transporters, TCS and PTS could be the reasons for the acceleration of nitrogen, carbon and sulfate metabolism. The degrading-genes of DBP were increased markedly in soil exposed to DBP. In summary, DBP contamination altered the microbial community and enhanced the gene abundances of the carbon, nitrogen and sulfur metabolism in black soils in the short term.


Asunto(s)
Dibutil Ftalato/toxicidad , Contaminantes Ambientales/toxicidad , Microbiota/efectos de los fármacos , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Dibutil Ftalato/metabolismo , Contaminantes Ambientales/metabolismo , Redes y Vías Metabólicas , Metagenoma , Suelo , Contaminantes del Suelo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA