Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 130: 155373, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38850630

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) is an acute respiratory disease characterized by bilateral chest radiolucency and severe hypoxemia. Quzhou Fructus Aurantii ethyl acetate extract (QFAEE), which is prepared from the traditional Chinese respiratory anti-inflammatory natural herb Quzhou Fructus Arantii, has the potential to alleviate ARDS. In this work, we aimed to investigate the potential and mechanism underlying the action of QFAEE on ARDS and how QFAEE modulates the STING pathway to reduce type I interferon release to alleviate the inflammatory response. METHODS: Lipopolysaccharide (LPS), a potential proinflammatory stimulant capable of causing pulmonary inflammation with edema after nasal drops, was employed to model ARDS in vitro and in vivo. Under QFAEE intervention, the mechanism of action of QFAEE to alleviate ARDS was explored in this study. TREX1-/- mice were sued as a research model for the activation of the congenital STING signaling pathway. The effect of QFAEE on TREX1-/- mice could explain the STING-targeted effect of QFAEE on alleviating the inflammatory response. Our explorations covered several techniques, Western blot, histological assays, immunofluorescence staining, transcriptomic assays and qRT-PCR to determine the potential mechanism of action of QFAEE in antagonizing the inflammatory response in the lungs, as well as the mechanism of action of QFAEE in targeting the STING signaling pathway to regulate the release of type I interferon. RESULTS: QFAEE effectively alleviates ARDS symptoms in LPS-induced ARDS. We revealed that the mechanism underlying LPS-induced ARDS is the STING-TBK1 signaling pathway and further elucidated the molecular mechanism of QFAEE in the prevention and treatment of ARDS. QFAEE reduced the release of type I interferons by inhibiting the STING-TBK1-IRF3 axis, thus alleviating LPS-induced pneumonia and lung cell death in mice. Another key finding is that activation of the STING pathway by activators or targeted knockdown of the TREX1 gene can also induce ARDS. As expected, QFAEE was found to be an effective protective agent in alleviating ARDS and the antagonistic effect of QFAEE on ARDS was achieved by inhibiting the STING signaling pathway. CONCLUSIONS: The main anti-inflammatory effect of QFAEE was achieved by inhibiting the STING signaling pathway and reducing the release of type I interferons. According to this mechanism of effect, QFAEE can effectively alleviate ARDS and can be considered a potential therapeutic agent. In addition, the STING pathway plays an essential role in the development and progression of ARDS, and it is a potential target for ARDS therapy.


Asunto(s)
Antiinflamatorios , Interferón Tipo I , Lipopolisacáridos , Proteínas de la Membrana , Síndrome de Dificultad Respiratoria , Animales , Interferón Tipo I/metabolismo , Ratones , Antiinflamatorios/farmacología , Proteínas de la Membrana/metabolismo , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Pulmón/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Humanos , Ratones Endogámicos C57BL , Medicamentos Herbarios Chinos/farmacología , Extractos Vegetales/farmacología , Neumonía/tratamiento farmacológico , Neumonía/inducido químicamente
2.
Environ Pollut ; 347: 123643, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428793

RESUMEN

Heat exposure induces excessive hyperthermia associated with systemic inflammatory response that leads to multiple organ dysfunction including acute lung injury. However, how heat impairs the lung remains elusive so far. We aimed to explore the underlying mechanism by focusing on leucine-rich repeat kinase 2 (LRRK2), which was associated with lung homeostasis. Both in vivo and in vitro models were induced by heat exposure. Firstly, heat exposure exerted core temperature (Tc) disturbance, pulmonary dysfunction, atelectasis, inflammation, impaired energy metabolism, and reduced surfactant proteins in the lung of mice. In addition, decreased LRRK2 expression and increased heat shock proteins (HSPs) 70 were observed with heat exposure in both the lung of mice and alveolar type II epithelial cells (AT2). Furthermore, LRRK2 inhibition aggravated heat exposure-initiated Tc dysregulation, injury in the lung and AT2 cells, and enhanced HSP70 expression. In conclusion, LRRK2 is involved in heat-induced acute lung injury and AT2 cell dysfunction.


Asunto(s)
Lesión Pulmonar Aguda , Lesión Pulmonar , Humanos , Células Epiteliales Alveolares/metabolismo , Pulmón , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo
3.
Ecotoxicol Environ Saf ; 274: 116217, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489904

RESUMEN

The aim of this study is to conduct a thorough evaluation of the association between Benzophenone-3 (BP-3) exposure and OA, offering critical insights into the underlying mechanisms involved. The National Health and Nutrition Examination Survey (NHANES) database was utilized to investigate the correlation between BP-3 and osteoarthritis. Proteomic sequencing from clinical sample and the PharmMapper online tool were employed to predict the biological target of BP-3. Cellular molecular assays and transfection studies were performed to verify the prediction from bioinformatics analyses. Through cross-sectional analysis of the NHANES database, we identified BP-3 as a risk factor for OA development. The results of proteomic sequencing showed that Secreted Protein Acidic and Rich in Cysteine (SPARC) was significantly elevated in the area of damage compared to the undamaged area. SPARC was also among the potential biological targets of BP-3 predicted by the online program. Through in vitro cell experiments, we further determined that the toxicological effects of BP-3 may be due to SPARC, which elevates intracellular GPX4 levels, activates the glutathione system, and promotes lipid peroxidation to mitigate ferroptosis. Inhibiting SPARC expression has been shown to reduce inflammation and ferroptosis in OA contexts. This research provides an expansive understanding of BP-3's influence on osteoarthritis development. We have identified SPARC as a potent target for combating chondrocyte ferroptosis in BP-3-associated osteoarthritis.


Asunto(s)
Benzofenonas , Ferroptosis , Osteoartritis , Osteonectina , Humanos , Benzofenonas/metabolismo , Benzofenonas/toxicidad , Biología Computacional , Estudios Transversales , Ferroptosis/efectos de los fármacos , Encuestas Nutricionales , Osteoartritis/inducido químicamente , Osteonectina/antagonistas & inhibidores , Osteonectina/genética , Osteonectina/metabolismo , Proteómica
4.
Viruses ; 15(10)2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37896845

RESUMEN

The black-necked crane is the only species of crane that lives in the high-altitude region of the Tibet Plateau. At present, there is little research on viral diseases of the black-necked crane (Grus nigricollis). In this study, a viral metagenomic approach was employed to investigate the fecal virome of black-necked cranes in Saga County, Shigatse City, Tibet, China. The identified virus families carried by black-necked cranes mainly include Genomoviridae, Parvoviridae, and Picornaviridae. The percentages of sequence reads belonging to these three virus families were 1.6%, 3.1%, and 93.7%, respectively. Among them, one genome was characterized as a novel species in the genus Grusopivirus of the family Picornaviridae, four new parvovirus genomes were obtained and classified into four different novel species within the genus Chaphamaparvovirus of the subfamily Hamaparvovirinae, and four novel genomovirus genomes were also acquired and identified as members of three different species, including Gemykroznavirus haeme1, Gemycircularvirus ptero6, and Gemycircularvirus ptero10. All of these viruses were firstly detected in fecal samples of black-necked cranes. This study provides valuable information for understanding the viral community composition in the digestive tract of black-necked cranes in Tibet, which can be used for monitoring, preventing, and treating potential viral diseases in black-necked cranes.


Asunto(s)
Picornaviridae , Virosis , Virus , Humanos , Filogenia , Virus/genética , Metagenoma , Heces , Virosis/genética , Picornaviridae/genética
5.
Biomed Pharmacother ; 162: 114691, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37060659

RESUMEN

The broad-spectrum antineoplastic drug doxorubicin (DOX) has one of the most serious chronic side effects on the heart, dilated cardiomyopathy, but the precise molecular mechanisms underlying disease progression subsequent to long latency periods remain puzzling. Here, we established a model of DOX-induced dilated cardiomyopathy. In a cardiac cytology exploration, we found that differentially expressed genes in the KEGG signaling pathway enrichment provided a novel complex network of mTOR bridging autophagy and oxidative stress. Validation results showed that DOX caused intracellular reactive oxygen species accumulation in cardiomyocytes, disrupted mitochondria, led to imbalanced intracellular energy metabolism, and triggered cardiomyocyte apoptosis. Apoptosis showed a negative correlation with DOX-regulated cardiomyocyte autophagy. To evaluate whether the inhibition of mTOR could upregulate autophagy to protect cardiomyocytes, we used rapamycin to restore autophagy depressed by DOX. Rapamycin increased cardiomyocyte survival by easing the autophagic flux blocked by DOX. In addition, rapamycin reduced oxidative stress, prevented mitochondrial damage, and restored energy metabolic homeostasis in DOX-treated cardiomyocytes. In vivo, we used metformin (Met) which is an AMPK activator to protect cardiac tissue to alleviate DOX-induced dilated cardiomyopathy. In this study, Met significantly attenuated the oxidative stress response of myocardial tissue caused by DOX and activated cardiomyocyte autophagy to maintain cardiomyocyte energy metabolism and reduce cardiomyocyte apoptosis by downregulating mTOR activity. Overall, our study revealed the role of autophagy and apoptosis in DOX-induced dilated cardiomyopathy and demonstrated the potential role of regulation of the AMPK/mTOR axis in the treatment of DOX-induced dilated cardiomyopathy.


Asunto(s)
Cardiomiopatía Dilatada , Humanos , Cardiomiopatía Dilatada/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Doxorrubicina/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Miocitos Cardíacos , Apoptosis , Autofagia , Estrés Oxidativo , Sirolimus/farmacología
6.
Front Immunol ; 13: 999945, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36177044

RESUMEN

Dendrobium polysaccharide exhibits multiple biological activities, such as immune regulation, antioxidation, and antitumor. However, its resistance to viral infection by stimulating immunity is rarely reported. In this study, we explored the effect and mechanism of DVP-1, a novel polysaccharide from Dendrobium devonianum, in the activation of immunity. After being activated by DVP-1, the ability of mice to prevent H1N1 influenza virus infection was investigated. Results of immune regulation showed that DVP-1 significantly improved the immune organ index, lymphocyte proliferation, and mRNA expression level of cytokines, such as IL-1ß, IL-4, IL-6, and TNF-α in the spleen. Immunohistochemical results showed that DVP-1 obviously promoted the mucosal immunity in the jejunum tissue. In addition, the expression levels of TLR4, MyD88, and TRAF6 and the phosphorylation levels of TAK1, Erk, JNK, and NF-κB in the spleen were upregulated by DVP-1. The virus infection results showed that the weight loss of mice slowed down, the survival rate increased, the organ index of the lung reduced, and the virus content in the lung decreased after DVP-1 activated immunity. By activating immunity with DVP-1, the production of inflammatory cells and inflammatory factors in BALF, and alveolar as well as peribronchiolar inflammation could be prevented. The results manifested that DVP-1 could resist H1N1 influenza virus infection by activating immunity through the TLR4/MyD88/NF-κB pathway.


Asunto(s)
Dendrobium , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Citocinas/metabolismo , Dendrobium/metabolismo , Subtipo H1N1 del Virus de la Influenza A/genética , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Polisacáridos/farmacología , ARN Mensajero , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
7.
Genes Genomics ; 44(7): 823-832, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35583792

RESUMEN

BACKGROUND: CHMP1A, a member of the ESCRT-III complex family, has been indicated as a brand-new inhibitor gene of tumors. Our previous research has revealed that CHMP1A plays a vital role in the development and progression of renal cell carcinoma (RCC). OBJECTIVE: To investigate the potential target pathway of the regulation of the tumor cell growth by CHMP1A. METHODS: The effect of CHMP1A on mTOR pathway was elucidated by western blotting. The effect of CHMP1A on the expression of p53 was evaluated, and A498 cell growth was assessed by colony formation and MTT assays. The expression of p53 was knocked down by shRNA-p53, and the effect of CHMP1A on mTOR after knockdown of p53 was evaluated. The effect of CHMP1A on apoptosis and its relationship with MDM2 pathway were detected by western blotting and FCM. Finally, the relationship between the regulation of p53 by CHMP1A and the PI3K/mTOR pathway was detected. RESULTS: This study showed that the mTOR pathway was suppressed significantly in CHMP1A-overexpressing A498 and 786-0 cells; moreover, the enhanced expression of p53 and the reduced proliferation were shown in CHMP1A-overexpressing A498 cells. Furthermore, CHMP1A was able to regulate the PI3K/PTEN/mTOR and MDM2/p53 pathways in order to suppress RCC. In addition, CHMP1A regulated Bax and Bcl-2 via MDM2/p53 to induce the apoptosis of tumor cells and upregulated the expression of p53 via the PI3K/mTOR pathway. CONCLUSIONS: The results convey that CHMP1A-related suppression of RCC is closely related to the PI3K/mTOR/p53 pathway.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/farmacología
8.
Biomed Pharmacother ; 150: 112998, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35489281

RESUMEN

Diabetic nephropathy (DN), which is characterized by renal fibrosis, is a major complication of diabetes, a disease that afflicted more than 460 million people worldwide in 2019. Pyroptosis is an essential signaling pathway in DN-related injuries, such as renal fibrosis. Pyrroloquinoline quinone (PQQ) is a naturally occurring bioactive compound that protects human kidney 2 (HK-2) cells from oxidative stress-induced damage caused by high glucose concentrations. However, the nature and underlying mechanism of the effect of PQQ on DN-related renal fibrosis remains unclear. In this study, we evaluated whether PQQ has potential protective effects against renal fibrosis due to DN by establishing type 1 diabetes in mice via streptozotocin treatment and then inhibiting their pyroptosis signaling pathway. We found that compared to control mice, the area of renal fibrosis and injury were significantly increased in diabetic mice, and this was accompanied by increased levels of expression of collagen Ⅰ and transforming growth factor-ß1; increased concentrations of the inflammatory cytokines, interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α; and activation of the pyroptosis pathway components nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), caspase-1, IL-1ß, and IL-18. All of these changes were reversed by PQQ treatment. Analogously, we treated cultured HK-2 cells with a high concentration of glucose (35 mmol/L), which caused these cells to exhibit significantly increased concentrations of reactive oxygen species (ROS), phosphorylated (p)-nuclear factor kappa B (NF-κB), p-IkappaB, NLRP3, caspase-1, IL-1ß, and IL-18, and the loss of mitochondrial transmembrane potential. However, PQQ treatment significantly blunted these effects. In conclusion, in this study we demonstrated that PQQ attenuates renal fibrosis by alleviating mitochondrial dysfunction, reducing ROS production, and inhibiting the activation of the NF-κB/pyroptosis pathway under conditions of DN and hyperglycemia.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Animales , Caspasa 1 , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Fibrosis , Glucosa/farmacología , Humanos , Interleucina-18 , Riñón , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Cofactor PQQ/farmacología , Cofactor PQQ/uso terapéutico , Piroptosis , Especies Reactivas de Oxígeno/metabolismo
9.
Eur J Nutr ; 61(4): 1823-1836, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34997266

RESUMEN

PURPOSE: Diabetic cardiomyopathy (DCM), a common complication of diabetes mellitus and is characterized by myocardial hypertrophy and myocardial fibrosis. Pyrroloquinoline quinone (PQQ), a natural nutrient, exerts strong protection against various myocardial diseases. Pyroptosis, a type of inflammation-related programmed cell death, is vital to the development of DCM. However, the protective effects of PQQ against DCM and the associated mechanisms are not clear. This study aimed to investigate whether PQQ protected against DCM and to determine the underlying molecular mechanism. METHODS: Diabetes was induced in mice by intraperitoneal injection of streptozotocin, after which the mice were administered PQQ orally (10, 20, or 40 mg/kg body weight/day) for 12 weeks. AC16 human myocardial cells were divided into the following groups and treated accordingly: control (5.5 mmol/L glucose), high glucose (35 mmol/L glucose), and HG + PQQ groups (1 and 10 nmol/L PQQ). Cells were treated for 24 h. RESULTS: PQQ reduced myocardial hypertrophy and the area of myocardial fibrosis, which was accompanied by an increase in antioxidant function and a decrease in inflammatory cytokine levels. Moreover, myocardial hypertrophy-(ANP and BNP), myocardial fibrosis-(collagen I and TGF-ß1), and pyroptosis-related protein levels decreased in the PQQ treatment groups. Furthermore, PQQ abolished mitochondrial dysfunction and the activation of NF-κB/IκB, and decreased NLRP3 inflammation-mediated pyroptosis in AC16 cells under high-glucose conditions. CONCLUSION: PQQ improved DCM in diabetic mice by inhibiting NF-κB/NLRP3 inflammasome-mediated cell pyroptosis. Long-term dietary supplementation with PQQ may be greatly beneficial for the treatment of DCM. Diagram of the underlying mechanism of the effects of PQQ on DCM. PQQ inhibits ROS generation and NF-κB activation, which stimulates activation of the NLRP3 inflammasome and regulates the expression of caspase-1, IL-1ß, and IL-18. The up-regulated inflammatory cytokines trigger myocardial hypertrophy and cardiac fibrosis and promote the pathological process of DCM.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Animales , Cardiomegalia , Diabetes Mellitus Experimental/complicaciones , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Fibrosis , Glucosa , Inflamasomas/metabolismo , Inflamación/complicaciones , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Cofactor PQQ/metabolismo , Cofactor PQQ/farmacología , Cofactor PQQ/uso terapéutico , Piroptosis , Transducción de Señal
10.
Phytomedicine ; 88: 153597, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34111614

RESUMEN

BACKGROUND: Doxorubicin (DOX) is a widely used antitumor drug. However, its clinical application is limited for its serious cardiotoxicity. The mechanism of DOX-induced cardiotoxicity is attributed to the increasing of cell stress in cardiomyocytes, then following autophagic and apoptotic responses. Our previous studies have demonstrated the protective effect of Shenmai injection (SMI) on DOX-induced cardiotoxicity via regulation of inflammatory mediators for releasing cell stress. PURPOSE: To further investigate whether SMI attenuates the DOX-induced cell stress in cardiomyocytes, we explored the mechanism underlying cell stress as related to Jun N-terminal kinase (JNK) activity and the regulation of autophagic flux to determine the mechanism by which SMI antagonizes DOX-induced cardiotoxicity. STUDY DESIGN: The DOX-induced cardiotoxicity model of autophagic cell death was established in vitro to disclose the protected effects of SMI on oxidative stress, autophagic flux and JNK signaling pathway. Then the autophagic mechanism of SMI antagonizing DOX cardiotoxicity was validated in vivo. RESULTS: SMI was able to reduce the DOX-induced cardiomyocyte apoptosis associated with inhibition of activation of the JNK pathway and the accumulation of reactive oxygen species (ROS). Besides, SMI antagonized DOX cardiotoxicity, regulated cardiomyocytes homeostasis by restoring DOX-induced cardiomyocytes autophagy. Under specific circumstances, SMI depressed autophagic process by reducing the Beclin 1-Bcl-2 complex dissociation which was activated by DOX via stimulating the JNK signaling pathway. At the same time, SMI regulated lysosomal pH to restore the autophagic flux which was blocked by DOX in cardiomyocytes. CONCLUSION: SMI regulates cardiomyocytes apoptosis and autophagy by controlling JNK signaling pathway, blocking DOX-induced apoptotic pathway and autophagy formation. SMI was also found to play a key role in restoring autophagic flux for counteracting DOX-damaged cardiomyocyte homeostasis.


Asunto(s)
Cardiotónicos/farmacología , Cardiotoxicidad/tratamiento farmacológico , Doxorrubicina/efectos adversos , Medicamentos Herbarios Chinos/farmacología , Animales , Antibióticos Antineoplásicos/efectos adversos , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Beclina-1/metabolismo , Cardiotónicos/administración & dosificación , Cardiotoxicidad/metabolismo , Línea Celular , Combinación de Medicamentos , Medicamentos Herbarios Chinos/administración & dosificación , Humanos , Inyecciones , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
11.
Pharm Biol ; 58(1): 276-285, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32251615

RESUMEN

Context: Shenmai Injection (SMI) is usually used to treat atherosclerotic coronary heart disease and viral myocarditis in China. However, the effect of SMI on multidrug resistance has not been reported.Objective: To investigate the reversal effect of SMI in adriamycin (ADR) resistant breast cancer cell line (MCF-7/ADR) and explore the related molecular mechanisms.Materials and methods: The effect of SMI (0.25, 0.5, 1 mg/mL) to reverse chemoresistance in MCF-7/ADR cells was elucidated by MTT, HPLC-FLD, DAPI staining, flow cytometric analysis, western blotting. At the same time, in vivo test was conducted to probe into the effect of SMI on reversing ADR resistance, and verapamil (10 µM) was used as a positive control.Results: The results showed that the toxicity of ADR to MCF-7/ADR cells was strengthened significantly after treated with SMI (0.25, 0.5, 1 mg/mL), the IC50 of ADR was decreased 54.4-fold. The intracellular concentrations of ADR were increased 2.2-fold (p < 0.05) and ADR accumulation was enhanced in the nuclei (p < 0.05). SMI could strongly enhance the ADR-induced apoptosis and increase intracellular rhodamine 123 accumulation in MCF-7/ADR cells. Additionally, a combination of ADR and SMI (5 mg/kg) could dramatically reduce the weight and volume of tumour (p < 0.05). Furthermore, the results revealed that SMI might reverse MDR via inhibiting ADR-induced activation of the mitogen-activated protein kinase/nuclear factor (NF)-κB pathway to down-regulated the expression of P-glycoprotein (P-gp).Discussion and conclusions: SMI could potentially be used to treat ADR-resistance. This suggests possibilities for future clinical research.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/farmacología , Medicamentos Herbarios Chinos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , FN-kappa B/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Doxorrubicina/metabolismo , Doxorrubicina/uso terapéutico , Combinación de Medicamentos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/uso terapéutico , Femenino , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Rodamina 123/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Life Sci ; 249: 117498, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32142765

RESUMEN

AIMS: Doxorubicin (DOX) is an effective anthracycline anticancer drug. However, the clinical usage of it is limited due to its severe cardiotoxicity side effects. Metformin (Met) is a kind of first-line antihyperglycemic drug which has a potential protective effect on the heart,it is often used for oral treatment of type 2 diabetes. In this study, we explored whether Met could attenuate cardiotoxicity induced by DOX. MATERIALS AND METHODS: For the sake of exploring the Met protective effect and mechanism, we established the DOX-induced cardiotoxicity models both in H9C2 cells incubated with 5 µM DOX in vitro and Sprague-Dawley rats treated with 20 mg/kg cumulative dose of DOX. KEY FINDINGS: Met is able to inhibit growth inhibition and apoptosis of H9C2 cells induced by DOX. The heart indexes of rats were examined to evaluate the Met cardiotoxicity protection. Met improved the abnormal indexes, serum markers of cardiac heart injury, echocardiography, electrocardiogram, cardiac pathology, cardiomyocyte apoptosis, and oxidative stress markers induced by DOX. Furthermore, in vivo and in vitro studies demonstrated that Met protected against DOX-induced increasing cleaved caspase-3 and Bax. Met also prevented the downregulation of Bcl-2, activated the AMPK pathway, and inhibited the MAPK pathway. SIGNIFICANCE: Met showed protective effects on DOX-induced cardiotoxicity by reducing oxidative stress and apoptosis, as well as regulating AMPK and MAPK signaling pathways.


Asunto(s)
Adenilato Quinasa/metabolismo , Antibióticos Antineoplásicos/toxicidad , Doxorrubicina/toxicidad , Corazón/efectos de los fármacos , Sistema de Señalización de MAP Quinasas , Metformina/farmacología , Animales , Línea Celular , Ratas , Ratas Sprague-Dawley
13.
Sci Rep ; 10(1): 1593, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005962

RESUMEN

The anti-inflammatory activity of Quzhou Fructus Aurantii Extract (QFAE) has been reported recently. Thus, present study aims to explore the mechanism of anti-inflammation of QFAE in vitro and in vivo to develop a lung phylactic agent. The anti-inflammatory mechanism of QFAE in RAW 264.7 cells and acute lung injury (ALI) mice model was determined by cytokines analysis, histopathological examination, Western blot assay, immunofluorescence, and immunohistochemistry analysis. The results showed that QFAE restrained mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways in LPS-induced RAW 264.7 cells, whereas AMP-activated protein kinase (AMPK) signaling pathways were activated, as revealed by prominent attenuation of phosphorylation of ERK, JNK, p38, p65, IκBα, RSK and MSK, and overt enhancement of phosphorylation of ACC and AMPKα. The levels of pro-inflammatory cytokines TNF, IL-6, and IL-1ß were suppressed, whereas the level of anti-inflammatory cytokine IL-10 increased after pretreatment with QFAE in vivo and in vitro. Moreover, QFAE prevented mice from LPS-provoked ALI, bases on alleviating neutrophils, and macrophages in bronchoalveolar lavage fluid (BALF) and mitigatingpulmonary histological alters, as well as hematological change. The MAPK and NF-κB signaling pathways in LPS-stimulated ALI mice were dampened by QFAE pretreatment, whereas AMPK signaling pathways were accelerated, as testify by significant restraint of phosphorylation of ERK, JNK, p38, p65, and IκBα, and distinct elevation of phosphorylation of ACC and AMPKα. The remarkable anti-inflammatory effect of QFAE is associated with the suppression of MAPK and NF-κB signaling pathways and the initiation of AMPK signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Inflamación/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Western Blotting , Cromatografía Líquida de Alta Presión , Citocinas/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos ICR , Células RAW 264.7/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
14.
BMC Complement Altern Med ; 19(1): 317, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31744501

RESUMEN

BACKGROUND: Doxorubicin (DOX) is a chemotherapy drug for malignant tumors. The clinical application of DOX is limited due to its dosage relative cardiotoxicity. Oxidative damage and cardiac inflammation appear to be involved in DOX-related cardiotoxicity. Shenmai injection (SMI), which mainly consists of Panax ginsengC.A.Mey.and Ophiopogon japonicus (Thunb.) Ker Gawl, is widely used for the treatment of atherosclerotic coronary heart disease and viral myocarditis in China. In this study, we investigated the protective effect of Shenmai injection on doxorubicin-induced acute cardiac injury via the regulation of inflammatory mediators. METHODS: Male ICR mice were randomly divided into seven groups: control, DOX (10 mg/kg), SMI (5 g/kg), DOX with pretreatment with SMI (0.5 g/kg, 1.5 g/kg or 5 g/kg) and DOX with post-treatment with SMI (5 g/kg). Forty-eight hours after the last DOX administration, all mice were anesthetized for ultrasound echocardiography. Then, serum was collected for biochemical and inflammatory cytokine detection, and heart tissue was collected for histological and Western blot detection. RESULTS: A cumulative dose of DOX (10 mg/kg) induced acute cardiotoxicity in mice manifested by altered echocardiographic outcome, and increased tumor necrosis factor, interleukin 6 (IL-6), monocyte chemotactic protein 1, interferon-γ, and serum AST and LDH levels, as well as cardiac cytoplasmic vacuolation and myofibrillar disarrangement. DOX also caused the increase in the expression of IKK-α and iNOS and produced a large amount of NO, resulting in the accumulation of nitrotyrosine in the heart tissue. Pretreatment with SMI elicited a dose-dependent cardioprotective effect in DOX-dosed mice as evidenced by the normalization of serum inflammatory mediators, as well as improve dcardiac function and myofibril disarrangement. CONCLUSIONS: SMI could recover inflammatory cytokine levels and suppress the expression of IKK-α and iNOS in vivo, which was increased by DOX. Overall, there was evidence that SMI could ameliorate DOX-induced cardiotoxicity by inhibiting inflammation and recovering heart dysfunction.


Asunto(s)
Antineoplásicos/toxicidad , Cardiotoxicidad/prevención & control , Doxorrubicina/toxicidad , Medicamentos Herbarios Chinos/administración & dosificación , Mediadores de Inflamación/metabolismo , Animales , Cardiotoxicidad/etiología , Cardiotoxicidad/genética , Cardiotoxicidad/metabolismo , Corazón/efectos de los fármacos , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Ophiopogon/química , Panax/química , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
15.
Sci Rep ; 8(1): 1698, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29374248

RESUMEN

Quzhou Fructus Aurantii (QFA) is an authentic herb of local varieties in Zhejiang, China, which is usually used to treat gastrointestinal illnesses, but its effects on respiratory inflammation have not been reported yet. In our study, the anti-inflammatory activity of QFA extract (QFAE) was evaluated on copper sulfate pentahydrate (CuSO4·5H2O)-induced transgenic neutrophil fluorescent zebrafish model. QFAE showed a significant effect of anti-inflammation in CuSO4·5H2O-induced zebrafish by reducing the neutrophil number in the inflammatory site. We investigated the anti-inflammatory activity of QFAE on lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice models and RAW 264.7 cells. QFAE had an anti-inflammatory effect on reducing total cells, neutrophils, and macrophages in BALF and attenuated alveolus collapse, neutrophils infiltration, lung W/D ratio, myeloperoxidase (MPO) protein expression and other pulmonary histological changes in lung tissues, as well as hematological changes. Levels of pro-inflammatory cytokines, including TNF, IL-6, IFN-γ, MCP-1, and IL-12p70, were decreased, whereas anti-inflammatory cytokine IL-10 was increased after treatment with QFAE both in vivo and in vitro. In summary, our results suggested that QFAE had apparent anti-inflammatory effects on CuSO4·5H2O-induced zebrafish, LPS-induced ALI mice, and RAW 264.7 cells. Furthermore, QFAE may be a therapeutic drug to treat ALI/ARDS and other respiratory inflammations.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Antiinflamatorios/administración & dosificación , Extractos Vegetales/administración & dosificación , Plantas Medicinales/química , Neumonía/prevención & control , Animales , Animales Modificados Genéticamente , Antiinflamatorios/aislamiento & purificación , Líquido del Lavado Bronquioalveolar/citología , China , Citocinas/análisis , Modelos Animales de Enfermedad , Pulmón/patología , Macrófagos/efectos de los fármacos , Ratones , Extractos Vegetales/aislamiento & purificación , Células RAW 264.7 , Resultado del Tratamiento , Pez Cebra
16.
Pak J Pharm Sci ; 30(2): 421-427, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28649066

RESUMEN

SHENMAI injection, a prescription comprised of Panax ginseng and Ophiopogon japonicas, is being extensively applied in the field of cardio-protection and immune-modulation in China. Ginsenosides are the main active components in SHENMAI injection. In order to capture and analyze the pharmacokinetic profile of major ginsenosides of SHENMAI injection in Beagle dogs, liquid chromatography equipped with electro-spray ionization and tandem mass spectrometry method was applied in simultaneous determination for protopanaxatriol type ginsenoside (Re, Rf, Rg1), protopanaxadiol type ginsenoside (Rb2, Rb1, Rd, Rc) and oleanolic acid type ginsenoside (Ro). A C18 column (150 × 2.1mm, 5µm) and a linear gradient program were used to achieve chromatographic separation, with 0.02% acetic acid solution and acetonitrile. I.S. and ginsenosides were detected by LC-MS/MS in selective reaction mode. Good linearity spanning 5- 1500ng/mL was achieved with the R2 values higher than 0.99 for all analytes. Limit of quantification of all analytes were 3ng/mL. Intra- and inter-day precisions ranges from 0.47 to15.68 % and accuracies were within the range of 85.27-117.57%. Validated analyzing method was then used in the pharmacokinetic experiment for SMI in dogs. The results showed that the pharmacokinetic profile of protopanaxadiol, protopanaxatriol and oleanolic acid type ginsenoside were significant difference in dogs. Protopanaxadiol type ginsenosides exhibited an extremely higher level of exposure and a much slower elimination process. Whereas protopanaxatriol type ginsenosides were quickly eliminated. We concluded that 20 (S) - protopanaxadiol type ginseno sides could be a potential pharmacokinetic marker of SHENMAI injection.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Ginsenósidos/aislamiento & purificación , Ginsenósidos/farmacocinética , Animales , Cromatografía Liquida , Perros , Combinación de Medicamentos , Ginsenósidos/sangre , Infusiones Intravenosas , Límite de Detección , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
17.
Regul Toxicol Pharmacol ; 83: 5-12, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27840091

RESUMEN

SHENMAI injection (SMI), derived from famous Shen Mai San, is a herbal injection widely used in China. Ginsenosides are the major components of SMI. To monitor the exposure level of SMI during long-term treatment, a 6-month toxicokinetic experiment was performed. Twenty-four beagle dogs were dived into four groups (n = 6 in each group): a control group (0.9% NaCl solution) and three SMI groups (2, 6 or 3 mg/kg). The dogs were i.v. infused with vehicle or SMI daily for 180 d. Blood samples for analysis were collected at specific time points as follows: pre-dose (0 h); at 10, 30, and 60 min during infusion; and at 10, 30, 60, 90, 120, 240, and 300 min post-administration. Concentrations of ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1 in the plasma were determined simultaneously by liquid chromatography-tandem mass spectrometry. Non-compartmental parameters were further calculated and analyzed. Significant differences were found between the kinetic behavior of 20(S)-protopanaxadiol-type (PPD-type) and 20(S)-protopanaxatriol-type (PPT-type) ginsenosides. Increasing in the exposure level of PPD-type ginsenosides was observed in dogs during the experiment. Therefore, PPD-type ginsenosides are closely related to the immunity modulation effect of SMI. Increased PPD-type ginsenoside exposure level may present potential toxicity and induce drug-drug interaction risks during SMI administration. As such, PPD-type ginsenoside accumulation must be carefully monitored in future SMI research.


Asunto(s)
Medicamentos Herbarios Chinos/toxicidad , Ginsenósidos/toxicidad , Sapogeninas/toxicidad , Toxicocinética , Animales , Carga Corporal (Radioterapia) , Cromatografía Líquida de Alta Presión , Perros , Combinación de Medicamentos , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacocinética , Femenino , Ginsenósidos/administración & dosificación , Ginsenósidos/sangre , Ginsenósidos/farmacocinética , Infusiones Intravenosas , Masculino , Modelos Biológicos , Reproducibilidad de los Resultados , Sapogeninas/administración & dosificación , Sapogeninas/sangre , Sapogeninas/farmacocinética , Espectrometría de Masas en Tándem , Factores de Tiempo
18.
Oxid Med Cell Longev ; 2017: 8235069, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29359010

RESUMEN

Fermented papaya extracts (FPEs) are obtained by fermentation of papaya by Aspergillus oryzae and yeasts. In this study, we investigated the protective effects of FPEs on mammary gland hyperplasia induced by estrogen and progestogen. Rats were randomly divided into 6 groups, including a control group, an FPE-alone group, a model group, and three FPE treatment groups (each receiving 30, 15, or 5 ml/kg FPEs). Severe mammary gland hyperplasia was induced upon estradiol benzoate and progestin administration. FPEs could improve the pathological features of the animal model and reduce estrogen levels in the serum. Analysis of oxidant indices revealed that FPEs could increase superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, decrease malondialdehyde (MDA) level in the mammary glands and serum of the animal models, and decrease the proportion of cells positive for the oxidative DNA damage marker 8-oxo-dG in the mammary glands. Additionally, estradiol benzoate and progestin altered the levels of serum biochemical compounds such as aspartate transaminase (AST), total bilirubin (TBIL), and alanine transaminase (ALT), as well as hepatic oxidant indices such as SOD, GSH-Px, MDA, and 8-oxo-2'-deoxyguanosine (8-oxo-dG). These indices reverted to normal levels upon oral administration of a high dose of FPEs. Taken together, our results indicate that FPEs can protect the mammary glands and other visceral organs from oxidative damage.


Asunto(s)
Carica/química , Estrógenos/toxicidad , Hiperplasia/inducido químicamente , Hiperplasia/tratamiento farmacológico , Glándulas Mamarias Animales/efectos de los fármacos , Extractos Vegetales/farmacología , Progestinas/toxicidad , Animales , Femenino , Fermentación , Glándulas Mamarias Animales/patología , Sustancias Protectoras/farmacología , Ratas , Ratas Sprague-Dawley
19.
J Ethnopharmacol ; 154(2): 391-9, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24747029

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: 'SHENMAI' injection (SMI) has been widely used in cardioprotection and modulation of the immune system because of its great efficacy. SMI primarily comprises the saponins from Panax ginseng and Ophiopogon japonicas. The profiles of saponins in SMI during long-term toxicokinetics remain unclear. MiR-146a possesses excellent sensitivity as a bio-marker in the innate immunity modification effect of SMI. AIM OF THE STUDY: Is to monitor the exposure level of SMI during a one-month toxicokinetic experiment, an analytical method involving ESI-LC-MS/MS technology was developed to determine 20 (S)-protopanaxadiol-type ginsenoside (Rb1, Rb2, Rc, Rd), 20 (S)-protopanaxatriol-type ginsenoside (Rg1, Re, Rf), oleanolic acid-type ginsenoside (Ro), and ophiopogonin D in rats. The levels of AST, CK, ALT, SOD, GSH-pX, MDA, miR-146a, and ECG were measured to explore the effects of SMI in cardiologic function and immune activity. RESULTS: Results show that the levels of AST, CK, and MDA decreased upon the administration of SMI. The level of miR-146a increased upon the administration of SMI dosage. During the administration of SMI, increasing exposure levels of 20 (S)-protopanaxadiol-type ginsenosides were also observed. CONCLUSION: The 20 (S)-protopanaxadiol-type ginsenosides were considered potential PK/TK markers because of their high exposure levels that continuously increased. Oxidative stress was slightly alleviated during the toxicokinetic study. Based on the level of miR-146a, negatively regulated innate immunity was observed. The regulation became more serious with increasing exposure levels of 20 (S)-protopanaxadiol-type ginsenosides. Negatively regulated innate immunity could be induced by long-term administration of SMI (>0.4g/kg).


Asunto(s)
Medicamentos Herbarios Chinos/toxicidad , Ginsenósidos/toxicidad , Inmunidad Innata/efectos de los fármacos , Saponinas/toxicidad , Espirostanos/toxicidad , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Biomarcadores/sangre , Creatina Quinasa/sangre , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacocinética , Etnofarmacología , Femenino , Ginsenósidos/administración & dosificación , Ginsenósidos/sangre , Inmunidad Innata/inmunología , Masculino , Medicina Tradicional China , MicroARNs/sangre , Ratas Sprague-Dawley , Saponinas/administración & dosificación , Saponinas/sangre , Espirostanos/administración & dosificación , Espirostanos/sangre , Factores de Tiempo , Toxicocinética
20.
Cancer Lett ; 319(2): 190-196, 2012 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-22261332

RESUMEN

Renal cell carcinoma (RCC) is a highly malignant and often fatal disease of the kidney. Chmp1A is a member of the Endosomal Sorting Complex Required for Transport (ESCRT-III) family, and plays a role in the cytoplasm in sorting proteins to the multivesicular body (MVB). Chmp1A functions as a tumor suppressor gene and has been reported in pancreatic tumor cells. Here, we examined the expression level of Chmp1A in human RCC tissues and renal tumor cells by real-time quantitative RT-PCR and western blot. We found that the expression level of Chmp1A is significantly lower in RCC tissues and renal tumor cells compared with adjacent non-tumorous tissues and normal renal cells. Additionally, inhibition of Chmp1A expression by shRNA induced tumor formation in normal renal cells. However, inhibition of Chmp1A did not significantly affect tumor cell proliferation in vitro and tumor progression in vivo. Interestingly, overexpression of Chmp1A using a eukaryotic plasmid inhibited the proliferation of renal tumor cells in vitro and the growth of renal tumor in vivo. Thus, our results demonstrate that Chmp1A functions as a tumor suppressor gene in renal cells and may be a useful target for treatment of RCC.


Asunto(s)
Carcinoma de Células Renales/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Genes Supresores , Neoplasias Renales/genética , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , ARN Interferente Pequeño/farmacología , Transfección , Proteínas de Transporte Vesicular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...