Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114080, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38581677

RESUMEN

Midbrain dopamine neurons are thought to play key roles in learning by conveying the difference between expected and actual outcomes. Recent evidence suggests diversity in dopamine signaling, yet it remains poorly understood how heterogeneous signals might be organized to facilitate the role of downstream circuits mediating distinct aspects of behavior. Here, we investigated the organizational logic of dopaminergic signaling by recording and labeling individual midbrain dopamine neurons during associative behavior. Our findings show that reward information and behavioral parameters are not only heterogeneously encoded but also differentially distributed across populations of dopamine neurons. Retrograde tracing and fiber photometry suggest that populations of dopamine neurons projecting to different striatal regions convey distinct signals. These data, supported by computational modeling, indicate that such distributional coding can maximize dynamic range and tailor dopamine signals to facilitate specialized roles of different striatal regions.


Asunto(s)
Neuronas Dopaminérgicas , Mesencéfalo , Neuronas Dopaminérgicas/fisiología , Neuronas Dopaminérgicas/metabolismo , Animales , Mesencéfalo/fisiología , Mesencéfalo/citología , Masculino , Ratones , Recompensa , Dopamina/metabolismo , Aprendizaje por Asociación/fisiología , Ratones Endogámicos C57BL
2.
Front Behav Neurosci ; 15: 815700, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35153695

RESUMEN

The neural circadian system consists of the master circadian clock in the hypothalamic suprachiasmatic nuclei (SCN) communicating time of day cues to the rest of the body including other brain areas that also rhythmically express circadian clock genes. Over the past 16 years, evidence has emerged to indicate that the habenula of the epithalamus is a candidate extra-SCN circadian oscillator. When isolated from the SCN, the habenula sustains rhythms in clock gene expression and neuronal activity, with the lateral habenula expressing more robust rhythms than the adjacent medial habenula. The lateral habenula is responsive to putative SCN output factors as well as light information conveyed to the perihabenula area. Neuronal activity in the lateral habenula is altered in depression and intriguingly disruptions in circadian rhythms can elevate risk of developing mental health disorders including depression. In this review, we will principally focus on how circadian and light signals affect the lateral habenula and evaluate the possibility that alteration in these influences contribute to mental health disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...