Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(42): e2309331120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37831742

RESUMEN

Sleep is vital for most animals, yet its mechanism and function remain unclear. We found that permeability of the BBB (blood-brain barrier)-the organ required for the maintenance of homeostatic levels of nutrients, ions, and other molecules in the brain-is modulated by sleep deprivation (SD) and can cell-autonomously effect sleep changes. We observed increased BBB permeability in known sleep mutants as well as in acutely sleep-deprived animals. In addition to molecular tracers, SD-induced BBB changes also increased the penetration of drugs used in the treatment of brain pathologies. After chronic/genetic or acute SD, rebound sleep or administration of the sleeping aid gaboxadol normalized BBB permeability, showing that SD effects on the BBB are reversible. Along with BBB permeability, RNA levels of the BBB master regulator moody are modulated by sleep. Conversely, altering BBB permeability alone through glia-specific modulation of moody, gαo, loco, lachesin, or neuroglian-each a well-studied regulator of BBB function-was sufficient to induce robust sleep phenotypes. These studies demonstrate a tight link between BBB permeability and sleep and indicate a unique role for the BBB in the regulation of sleep.


Asunto(s)
Barrera Hematoencefálica , Proteínas de Drosophila , Animales , Barrera Hematoencefálica/metabolismo , Drosophila/metabolismo , Sueño/fisiología , Encéfalo/metabolismo , Privación de Sueño , Receptores Acoplados a Proteínas G/metabolismo , Permeabilidad , Proteínas de Drosophila/genética
2.
Sleep Health ; 9(6): 801-820, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37684151

RESUMEN

OBJECTIVE: To develop and present consensus findings of the National Sleep Foundation sleep timing and variability panel regarding the impact of sleep timing variability on health and performance. METHODS: The National Sleep Foundation assembled a panel of sleep and circadian experts to evaluate the scientific evidence and conduct a formal consensus and voting procedure. A systematic literature review was conducted using the NIH National Library of Medicine PubMed database, and panelists voted on the appropriateness of 3 questions using a modified Delphi RAND/UCLA Appropriateness Method with 2 rounds of voting. RESULTS: The literature search and panel review identified 63 full text publications to inform consensus voting. Panelists achieved consensus on each question: (1) is daily regularity in sleep timing important for (a) health or (b) performance? and (2) when sleep is of insufficient duration during the week (or work days), is catch-up sleep on weekends (or non-work days) important for health? Based on the evidence currently available, panelists agreed to an affirmative response to all 3 questions. CONCLUSIONS: Consistency of sleep onset and offset timing is important for health, safety, and performance. Nonetheless, when insufficient sleep is obtained during the week/work days, weekend/non-work day catch-up sleep may be beneficial.


Asunto(s)
Privación de Sueño , Sueño , Humanos , Consenso , Técnica Delphi
3.
Front Physiol ; 13: 1048751, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467698

RESUMEN

Genome-wide profiling of rhythmic gene expression has offered new avenues for studying the contribution of circadian clock to diverse biological processes. Sleep has been considered one of the most important physiological processes that are regulated by the circadian clock, however, the effects of chronic sleep loss on rhythmic gene expression remain poorly understood. In the present study, we exploited Drosophila sleep mutants insomniac 1 (inc 1 ) and wide awake D2 (wake D2 ) as models for chronic sleep loss. We profiled the transcriptomes of head tissues collected from 4-week-old wild type flies, inc 1 and wake D2 at timepoints around the clock. Analysis of gene oscillation revealed a substantial loss of rhythmicity in inc 1 and wake D2 compared to wild type flies, with most of the affected genes common to both mutants. The disruption of gene oscillation was not due to changes in average gene expression levels. We also identified a subset of genes whose loss of rhythmicity was shared among animals with chronic sleep loss and old flies, suggesting a contribution of aging to chronic, sleep-loss-induced disruption of gene oscillation.

4.
Nature ; 597(7875): 239-244, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34408325

RESUMEN

Social isolation and loneliness have potent effects on public health1-4. Research in social psychology suggests that compromised sleep quality is a key factor that links persistent loneliness to adverse health conditions5,6. Although experimental manipulations have been widely applied to studying the control of sleep and wakefulness in animal models, how normal sleep is perturbed by social isolation is unknown. Here we report that chronic, but not acute, social isolation reduces sleep in Drosophila. We use quantitative behavioural analysis and transcriptome profiling to differentiate between brain states associated with acute and chronic social isolation. Although the flies had uninterrupted access to food, chronic social isolation altered the expression of metabolic genes and induced a brain state that signals starvation. Chronically isolated animals exhibit sleep loss accompanied by overconsumption of food, which resonates with anecdotal findings of loneliness-associated hyperphagia in humans. Chronic social isolation reduces sleep and promotes feeding through neural activities in the peptidergic fan-shaped body columnar neurons of the fly. Artificial activation of these neurons causes misperception of acute social isolation as chronic social isolation and thereby results in sleep loss and increased feeding. These results present a mechanistic link between chronic social isolation, metabolism, and sleep, addressing a long-standing call for animal models focused on loneliness7.


Asunto(s)
Encéfalo/metabolismo , Drosophila melanogaster/metabolismo , Conducta Alimentaria , Modelos Animales , Sueño , Aislamiento Social , Inanición/metabolismo , Animales , Encéfalo/citología , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Femenino , Hambre , Hiperfagia/genética , Soledad , Masculino , Neuronas/metabolismo , Sueño/genética , Privación de Sueño/genética , Privación de Sueño/metabolismo , Inanición/genética , Factores de Tiempo , Transcriptoma
5.
Sleep Health ; 7(3): 293-302, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33795195

RESUMEN

Polyphasic sleep is the practice of distributing multiple short sleep episodes across the 24-hour day rather than having one major and possibly a minor ("nap") sleep episode each day. While the prevalence of polyphasic sleep is unknown, anecdotal reports suggest attempts to follow this practice are common, particularly among young adults. Polyphasic-sleep advocates claim to thrive on as little as 2 hours of total sleep per day. However, significant concerns have been raised that polyphasic sleep schedules can result in health and safety consequences. We reviewed the literature to identify the impact of polyphasic sleep schedules (excluding nap or siesta schedules) on health, safety, and performance outcomes. Of 40,672 potentially relevant publications, with 2,023 selected for full-text review, 22 relevant papers were retained. We found no evidence supporting benefits from following polyphasic sleep schedules. Based on the current evidence, the consensus opinion is that polyphasic sleep schedules, and the sleep deficiency inherent in those schedules, are associated with a variety of adverse physical health, mental health, and performance outcomes. Striving to adopt a schedule that significantly reduces the amount of sleep per 24 hours and/or fragments sleep into multiple episodes throughout the 24-hour day is not recommended.


Asunto(s)
Salud Mental , Sueño , Consenso , Humanos , Prevalencia , Adulto Joven
6.
Nat Rev Mol Cell Biol ; 21(2): 67-84, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31768006

RESUMEN

To accommodate daily recurring environmental changes, animals show cyclic variations in behaviour and physiology, which include prominent behavioural states such as sleep-wake cycles but also a host of less conspicuous oscillations in neurological, metabolic, endocrine, cardiovascular and immune functions. Circadian rhythmicity is created endogenously by genetically encoded molecular clocks, whose components cooperate to generate cyclic changes in their own abundance and activity, with a periodicity of about a day. Throughout the body, such molecular clocks convey temporal control to the function of organs and tissues by regulating pertinent downstream programmes. Synchrony between the different circadian oscillators and resonance with the solar day is largely enabled by a neural pacemaker, which is directly responsive to certain environmental cues and able to transmit internal time-of-day representations to the entire body. In this Review, we discuss aspects of the circadian clock in Drosophila melanogaster and mammals, including the components of these molecular oscillators, the function and mechanisms of action of central and peripheral clocks, their synchronization and their relevance to human health.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Animales , Relojes Circadianos/fisiología , Drosophila melanogaster/fisiología , Humanos , Mamíferos/fisiología
7.
Angew Chem Int Ed Engl ; 57(36): 11532-11539, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30003624

RESUMEN

Living organisms have a biological clock that helps to prepare our physiology for the fluctuations of the day. Key research to elucidate the biological mechanisms of this regular adaptation, referred to as the circadian rhythm, is described by M. W. Young in his Nobel lecture.


Asunto(s)
Trastornos Cronobiológicos/etiología , Ritmo Circadiano , Animales , Trastornos Cronobiológicos/genética , Trastornos Cronobiológicos/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Drosophila/genética , Drosophila/fisiología , Regulación de la Expresión Génica , Humanos , Mutación
8.
Elife ; 72018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29611807

RESUMEN

In the Drosophila circadian clock, Period (PER) and Timeless (TIM) proteins inhibit Clock-mediated transcription of per and tim genes until PER is degraded by Doubletime/CK1 (DBT)-mediated phosphorylation, establishing a negative feedback loop. Multiple regulatory delays within this feedback loop ensure ~24 hr periodicity. Of these delays, the mechanisms that regulate delayed PER degradation (and Clock reactivation) remain unclear. Here we show that phosphorylation of certain DBT target sites within a central region of PER affect PER inhibition of Clock and the stability of the PER/TIM complex. Our results indicate that phosphorylation of PER residue S589 stabilizes and activates PER inhibitory function in the presence of TIM, but promotes PER degradation in its absence. The role of DBT in regulating PER activity, stabilization and degradation ensures that these events are chronologically and biochemically linked, and contributes to the timing of an essential delay that influences the period of the circadian clock.


Asunto(s)
Caseína Cinasa 1 épsilon/metabolismo , Relojes Circadianos , Proteínas de Drosophila/metabolismo , Proteínas Circadianas Period/metabolismo , Activación Transcripcional , Animales , Drosophila , Retroalimentación Fisiológica , Regulación de la Expresión Génica
9.
Proc Natl Acad Sci U S A ; 115(15): 3822-3827, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29581265

RESUMEN

Cryptochromes (CRYs) entrain the circadian clocks of plants and animals to light. Irradiation of the Drosophila cryptochrome (dCRY) causes reduction of an oxidized flavin cofactor by a chain of conserved tryptophan (Trp) residues. However, it is unclear how redox chemistry within the Trp chain couples to dCRY-mediated signaling. Here, we show that substitutions of four key Trp residues to redox-active tyrosine and redox-inactive phenylalanine tune the light sensitivity of dCRY photoreduction, conformational activation, cellular stability, and targeted degradation of the clock protein timeless (TIM). An essential surface Trp gates electron flow into the flavin cofactor, but can be relocated for enhanced photoactivation. Differential effects of Trp-mediated flavin photoreduction on cellular turnover of TIM and dCRY indicate that these activities are separated in time and space. Overall, the dCRY Trp chain has evolutionary importance for light sensing, and its manipulation has implications for optogenetic applications of CRYs.


Asunto(s)
Relojes Circadianos , Criptocromos/química , Criptocromos/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas del Ojo/química , Proteínas del Ojo/metabolismo , Triptófano/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Criptocromos/genética , Dinitrocresoles/metabolismo , Drosophila/química , Drosophila/genética , Drosophila/efectos de la radiación , Proteínas de Drosophila/genética , Proteínas del Ojo/genética , Luz , Oxidación-Reducción/efectos de la radiación , Triptófano/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-28893860

RESUMEN

Specialized groups of neurons in the brain are key mediators of circadian rhythms, receiving daily environmental cues and communicating those signals to other tissues in the organism for entrainment and to organize circadian physiology. In Drosophila, the "circadian clock" is housed in seven neuronal clusters, which are defined by their expression of the main circadian proteins, Period, Timeless, Clock, and Cycle. These clusters are distributed across the fly brain and are thereby subject to the respective environments associated with their anatomical locations. While these core components are universally expressed in all neurons of the circadian network, additional regulatory proteins that act on these components are differentially expressed, giving rise to "local clocks" within the network that nonetheless converge to regulate coherent behavioral rhythms. In this review, we describe the communication between the neurons of the circadian network and the molecular differences within neurons of this network. We focus on differences in protein-expression patterns and discuss how such variation can impart functional differences in each local clock. Finally, we summarize our current understanding of how communication within the circadian network intersects with intracellular biochemical mechanisms to ultimately specify behavioral rhythms. We propose that additional efforts are required to identify regulatory mechanisms within each neuronal cluster to understand the molecular basis of circadian behavior.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Neuronas/fisiología , Animales , Actividad Motora , Red Nerviosa/fisiología
11.
Cell ; 171(6): 1236-1240, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29195067
12.
Cell ; 169(2): 203-215.e13, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28388406

RESUMEN

Patterns of daily human activity are controlled by an intrinsic circadian clock that promotes ∼24 hr rhythms in many behavioral and physiological processes. This system is altered in delayed sleep phase disorder (DSPD), a common form of insomnia in which sleep episodes are shifted to later times misaligned with the societal norm. Here, we report a hereditary form of DSPD associated with a dominant coding variation in the core circadian clock gene CRY1, which creates a transcriptional inhibitor with enhanced affinity for circadian activator proteins Clock and Bmal1. This gain-of-function CRY1 variant causes reduced expression of key transcriptional targets and lengthens the period of circadian molecular rhythms, providing a mechanistic link to DSPD symptoms. The allele has a frequency of up to 0.6%, and reverse phenotyping of unrelated families corroborates late and/or fragmented sleep patterns in carriers, suggesting that it affects sleep behavior in a sizeable portion of the human population.


Asunto(s)
Criptocromos/metabolismo , Trastornos del Sueño del Ritmo Circadiano/genética , Ritmo Circadiano , Criptocromos/genética , Exones , Femenino , Eliminación de Gen , Humanos , Masculino , Persona de Mediana Edad , Linaje , Trastornos del Sueño del Ritmo Circadiano/fisiopatología
13.
Proc Natl Acad Sci U S A ; 113(36): 10073-8, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27551082

RESUMEN

Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions.


Asunto(s)
Relojes Circadianos/genética , Criptocromos/química , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas del Ojo/química , Histidina/química , Protones , Secuencias de Aminoácidos , Animales , Benzoquinonas/química , Benzoquinonas/metabolismo , Dominio Catalítico , Criptocromos/genética , Criptocromos/metabolismo , Cristalografía por Rayos X , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Flavinas/química , Flavinas/metabolismo , Expresión Génica , Histidina/metabolismo , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Luz , Simulación de Dinámica Molecular , Oxidación-Reducción , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
J Neurosci ; 36(12): 3414-21, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-27013671

RESUMEN

Circadian clocks enable organisms to anticipate and adapt to fluctuating environmental conditions. Despite substantial knowledge of central clock machineries, we have less understanding of how the central clock's behavioral outputs are regulated. Here, we identify Drosophila miR-124 as a critical regulator of diurnal activity. During normal light/dark cycles, mir-124 mutants exhibit profoundly abnormal locomotor activity profiles, including loss of anticipatory capacities at morning and evening transitions. Moreover,mir-124 mutants exhibited striking behavioral alterations in constant darkness (DD), including a temporal advance in peak activity. Nevertheless, anatomical and functional tests demonstrate a normal circadian pacemaker in mir-124 mutants, indicating this miRNA regulates clock output. Among the extensive miR-124 target network, heterozygosity for targets in the BMP pathway substantially corrected the evening activity phase shift in DD. Thus, excess BMP signaling drives specific circadian behavioral output defects in mir-124 knock-outs. SIGNIFICANCE STATEMENT: Circadian clocks control rhythmic behaviors of most life-forms. Despite extensive knowledge of the central clock, there is less understanding of how its behavioral outputs are regulated. Here, we identify a conserved neural microRNA as a critical regulator of diurnal behavior. We find Drosophila mir-124 mutants exhibit robust activity abnormalities during normal light/dark cycles and during constant darkness. Nevertheless, as the central pacemaker is functional in these mutants, miR-124 regulates clock output. We provide mechanistic insight by showing deregulation of miR-124 targets in BMP signaling drives specific mir-124 defects. In summary,Drosophila mir-124 mutants reveal post-transcriptional control of circadian activities, and impact of BMP signaling in behavioral output.


Asunto(s)
Relojes Biológicos/fisiología , Encéfalo/fisiología , Generadores de Patrones Centrales/fisiología , Ritmo Circadiano/fisiología , Drosophila/fisiología , Locomoción/fisiología , MicroARNs/fisiología , Animales , Conducta Animal/fisiología , Masculino
15.
Proc Natl Acad Sci U S A ; 112(46): E6284-92, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26578788

RESUMEN

All known circadian clocks have an endogenous period that is remarkably insensitive to temperature, a property known as temperature compensation, while at the same time being readily entrained by a diurnal temperature oscillation. Although temperature compensation and entrainment are defining features of circadian clocks, their mechanisms remain poorly understood. Most models presume that multiple steps in the circadian cycle are temperature-dependent, thus facilitating temperature entrainment, but then insist that the effect of changes around the cycle sums to zero to enforce temperature compensation. An alternative theory proposes that the circadian oscillator evolved from an adaptive temperature sensor: a gene circuit that responds only to temperature changes. This theory implies that temperature changes should linearly rescale the amplitudes of clock component oscillations but leave phase relationships and shapes unchanged. We show using timeless luciferase reporter measurements and Western blots against TIMELESS protein that this prediction is satisfied by the Drosophila circadian clock. We also review evidence for pathways that couple temperature to the circadian clock, and show previously unidentified evidence for coupling between the Drosophila clock and the heat-shock pathway.


Asunto(s)
Relojes Biológicos/fisiología , Relojes Circadianos/fisiología , Proteínas de Drosophila/metabolismo , Respuesta al Choque Térmico/fisiología , Modelos Biológicos , Sensación Térmica/fisiología , Animales , Drosophila melanogaster
16.
PLoS Genet ; 11(2): e1004974, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25674790

RESUMEN

Regulated nuclear entry of clock proteins is a conserved feature of eukaryotic circadian clocks and serves to separate the phase of mRNA activation from mRNA repression in the molecular feedback loop. In Drosophila, nuclear entry of the clock proteins, PERIOD (PER) and TIMELESS (TIM), is tightly controlled, and impairments of this process produce profound behavioral phenotypes. We report here that nuclear entry of PER-TIM in clock cells, and consequently behavioral rhythms, require a specific member of a classic nuclear import pathway, Importin α1 (IMPα1). In addition to IMPα1, rhythmic behavior and nuclear expression of PER-TIM require a specific nuclear pore protein, Nup153, and Ran-GTPase. IMPα1 can also drive rapid and efficient nuclear expression of TIM and PER in cultured cells, although the effect on PER is mediated by TIM. Mapping of interaction domains between IMPα1 and TIM/PER suggests that TIM is the primary cargo for the importin machinery. This is supported by attenuated interaction of IMPα1 with TIM carrying a mutation previously shown to prevent nuclear entry of TIM and PER. TIM is detected at the nuclear envelope, and computational modeling suggests that it contains HEAT-ARM repeats typically found in karyopherins, consistent with its role as a co-transporter for PER. These findings suggest that although PER is the major timekeeper of the clock, TIM is the primary target of nuclear import mechanisms. Thus, the circadian clock uses specific components of the importin pathway with a novel twist in that TIM serves a karyopherin-like role for PER.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Circadianas Period/metabolismo , alfa Carioferinas/metabolismo , Animales , Núcleo Celular/genética , Ritmo Circadiano , Citoplasma/metabolismo , Drosophila , Proteínas de Drosophila/genética , Inmunoprecipitación , Proteínas Circadianas Period/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , ARN Mensajero/genética , ARN de Transferencia/genética , alfa Carioferinas/genética
17.
Methods Enzymol ; 551: 3-27, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25662449

RESUMEN

The power of Drosophila melanogaster as a model organism lies in its ability to be used for large-scale genetic screens with the capacity to uncover the genetic basis of biological processes. In particular, genetic screens for circadian behavior, which have been performed since 1971, allowed researchers to make groundbreaking discoveries on multiple levels: they discovered that there is a genetic basis for circadian behavior, they identified the so-called core clock genes that govern this process, and they started to paint a detailed picture of the molecular functions of these clock genes and their encoded proteins. Since the discovery that fruit flies sleep in 2000, researchers have successfully been using genetic screening to elucidate the many questions surrounding this basic animal behavior. In this chapter, we briefly recall the history of circadian rhythm and sleep screens and then move on to describe techniques currently employed for mutagenesis and genetic screening in the field. The emphasis lies on comparing the newer approaches of transgenic RNA interference (RNAi) to classical forms of mutagenesis, in particular in their application to circadian behavior and sleep. We discuss the different screening approaches in light of the literature and published and unpublished sleep and rhythm screens utilizing ethyl methanesulfonate mutagenesis and transgenic RNAi from our lab.


Asunto(s)
Ritmo Circadiano/genética , Drosophila melanogaster/genética , Estudios de Asociación Genética/métodos , Sueño/genética , Animales , Drosophila melanogaster/fisiología , Técnicas de Silenciamiento del Gen , Pruebas Genéticas , Humanos , Mutagénesis , Mutación
18.
Annu Rev Biochem ; 83: 191-219, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24905781

RESUMEN

Research into the molecular mechanisms of eukaryotic circadian clocks has proceeded at an electrifying pace. In this review, we discuss advances in our understanding of the structures of central molecular players in the timing oscillators of fungi, insects, and mammals. A series of clock protein structures demonstrate that the PAS (Per/Arnt/Sim) domain has been used with great variation to formulate the transcriptional activators and repressors of the clock. We discuss how posttranslational modifications and external cues, such as light, affect the conformation and function of core clock components. Recent breakthroughs have also revealed novel interactions among clock proteins and new partners that couple the clock to metabolic and developmental pathways. Overall, a picture of clock function has emerged wherein conserved motifs and structural platforms have been elaborated into a highly dynamic collection of interacting molecules that undergo orchestrated changes in chemical structure, conformational state, and partners.


Asunto(s)
Proteínas CLOCK/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Animales , Bovinos , Drosophila , Hongos/fisiología , Glicosilación , Humanos , Insectos/fisiología , Luz , Fosforilación , Fotoquímica/métodos , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Rodopsina/fisiología , Opsinas de Bastones/fisiología , Transducción de Señal , Transcripción Genética
19.
Proc Natl Acad Sci U S A ; 110(51): 20455-60, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24297896

RESUMEN

Entrainment of circadian rhythms in higher organisms relies on light-sensing proteins that communicate to cellular oscillators composed of delayed transcriptional feedback loops. The principal photoreceptor of the fly circadian clock, Drosophila cryptochrome (dCRY), contains a C-terminal tail (CTT) helix that binds beside a FAD cofactor and is essential for light signaling. Light reduces the dCRY FAD to an anionic semiquinone (ASQ) radical and increases CTT proteolytic susceptibility but does not lead to CTT chemical modification. Additional changes in proteolytic sensitivity and small-angle X-ray scattering define a conformational response of the protein to light that centers at the CTT but also involves regions remote from the flavin center. Reduction of the flavin is kinetically coupled to CTT rearrangement. Chemical reduction to either the ASQ or the fully reduced hydroquinone state produces the same conformational response as does light. The oscillator protein Timeless (TIM) contains a sequence similar to the CTT; the corresponding peptide binds dCRY in light and protects the flavin from oxidation. However, TIM mutants therein still undergo dCRY-mediated degradation. Thus, photoreduction to the ASQ releases the dCRY CTT and promotes binding to at least one region of TIM. Flavin reduction by either light or cellular reductants may be a general mechanism of CRY activation.


Asunto(s)
Criptocromos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas del Ojo/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Transducción de Señal/fisiología , Animales , Relojes Circadianos/fisiología , Relojes Circadianos/efectos de la radiación , Criptocromos/química , Criptocromos/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas del Ojo/química , Proteínas del Ojo/genética , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/genética , Luz , Oxidación-Reducción/efectos de la radiación , Unión Proteica/fisiología , Unión Proteica/efectos de la radiación , Transducción de Señal/efectos de la radiación
20.
Bipolar Disord ; 15(6): 694-700, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23782472

RESUMEN

OBJECTIVES: Disruption of circadian function has been observed in several human disorders, including bipolar disorder (BD). Research into these disorders can be facilitated by human cellular models that evaluate external factors (zeitgebers) that impact circadian pacemaker activity. Incorporating a firefly luciferase reporter system into human fibroblasts provides a facile, bioluminescent readout that estimates circadian phase, while leaving the cells intact. We evaluated whether this system can be adapted to clinical BD research and whether it can incorporate zeitgeber challenge paradigms. METHODS: Fibroblasts from patients with bipolar I disorder (BD-I) (n = 13) and controls (n = 12) were infected ex vivo with a lentiviral reporter incorporating the promoter sequences for Bmal1, a circadian gene to drive expression of the firefly luciferase gene. Following synchronization, the bioluminescence was used to estimate period length. Phase response curves (PRCs) were also generated following forskolin challenge and the phase response patterns were characterized. RESULTS: Period length and PRCs could be estimated reliably from the constructs. There were no significant case-control differences in period length, with a nonsignificant trend for differences in PRCs following the phase-setting experiments. CONCLUSIONS: An ex vivo cellular fibroblast-based model can be used to investigate circadian function in BD-I. It can be generated from specific individuals and this could usefully complement ongoing circadian clinical research.


Asunto(s)
Trastorno Bipolar/patología , Trastorno Bipolar/fisiopatología , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Adulto , Antieméticos/farmacología , Línea Celular , Dexametasona/farmacología , Femenino , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo , Transfección , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...