Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proteomics ; : e2300644, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38766901

RESUMEN

Thermal proteome profiling (TPP) is a powerful tool for drug target deconvolution. Recently, data-independent acquisition mass spectrometry (DIA-MS) approaches have demonstrated significant improvements to depth and missingness in proteome data, but traditional TPP (a.k.a. CEllular Thermal Shift Assay "CETSA") workflows typically employ multiplexing reagents reliant on data-dependent acquisition (DDA). Herein, we introduce a new experimental design for the Proteome Integral Solubility Alteration via label-free DIA approach (PISA-DIA). We highlight the proteome coverage and sensitivity achieved by using multiple overlapping thermal gradients alongside DIA-MS, which maximizes efficiencies in PISA sample concatenation and safeguards against missing protein targets that exist at high melting temperatures. We demonstrate our extended PISA-DIA design has superior proteome coverage as compared to using tandem-mass tags (TMT) necessitating DDA-MS analysis. Importantly, we demonstrate our PISA-DIA approach has the quantitative and statistical rigor using A-1331852, a specific inhibitor of BCL-xL. Due to the high melt temperature of this protein target, we utilized our extended multiple gradient PISA-DIA workflow to identify BCL-xL. We assert our novel overlapping gradient PISA-DIA-MS approach is ideal for unbiased drug target deconvolution, spanning a large temperature range whilst minimizing target dropout between gradients, increasing the likelihood of resolving the protein targets of novel compounds.

2.
Cell Death Dis ; 15(3): 182, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429264

RESUMEN

Caspase-2, one of the most evolutionarily conserved members of the caspase family, is an important regulator of the cellular response to oxidative stress. Given that ferroptosis is suppressed by antioxidant defense pathways, such as that involving selenoenzyme glutathione peroxidase 4 (GPX4), we hypothesized that caspase-2 may play a role in regulating ferroptosis. This study provides the first demonstration of an important and unprecedented function of caspase-2 in protecting cancer cells from undergoing ferroptotic cell death. Specifically, we show that depletion of caspase-2 leads to the downregulation of stress response genes including SESN2, HMOX1, SLC7A11, and sensitizes mutant-p53 cancer cells to cell death induced by various ferroptosis-inducing compounds. Importantly, the canonical catalytic activity of caspase-2 is not required for its role and suggests that caspase-2 regulates ferroptosis via non-proteolytic interaction with other proteins. Using an unbiased BioID proteomics screen, we identified novel caspase-2 interacting proteins (including heat shock proteins and co-chaperones) that regulate cellular responses to stress. Finally, we demonstrate that caspase-2 limits chaperone-mediated autophagic degradation of GPX4 to promote the survival of mutant-p53 cancer cells. In conclusion, we document a novel role for caspase-2 as a negative regulator of ferroptosis in cells with mutant p53. Our results provide evidence for a novel function of caspase-2 in cell death regulation and open potential new avenues to exploit ferroptosis in cancer therapy.


Asunto(s)
Caspasa 2 , Ferroptosis , Caspasa 2/genética , Muerte Celular/genética , Chaperonas Moleculares , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Proteína p53 Supresora de Tumor/genética , Ferroptosis/genética
3.
J Antimicrob Chemother ; 67(2): 452-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22127588

RESUMEN

OBJECTIVES: The use of colistin in the treatment of life-threatening Gram-negative infections is associated with a high rate of nephrotoxicity that is dose limiting. This study aimed to examine the nephroprotective effect of ascorbic acid against colistin-induced nephrotoxicity. METHODS: Rats were treated intravenously twice daily with saline, colistin (cumulative dose of 36.5 mg/kg), a combination of ascorbic acid (50 or 200 mg/kg) and colistin, or ascorbic acid (200 mg/kg) over 7 days. Colistin-induced apoptosis was examined in rats over 5 days and in vitro using rat renal proximal tubular cells NRK-52E over 24 h with and without ascorbic acid. The effect of co-administered ascorbic acid on colistin pharmacokinetics was investigated. RESULTS: The 24 h urinary excretion of N-acetyl-ß-D-glucosaminidase, a sensitive marker for tubular damage, was significantly lower (P < 0.0001) in the colistin/ascorbic acid 200 mg/kg group. Significant histological abnormalities (P < 0.01) were detected only in the kidneys of the colistin group, which also had the highest percentage (30.6 ± 7.8%) of apoptotic cells (P < 0.005). In the cell culture studies, the percentage of apoptotic cells was significantly higher in the presence of 0.1 mM colistin alone (51.8 ± 2.0%; P < 0.0001) than in the presence of ascorbic acid, which decreased the apoptotic effect in a concentration-dependent manner. Ascorbic acid (200 mg/kg) altered colistin pharmacokinetics, as the total body clearance decreased from 3.78 ± 0.36 mL/min/kg (colistin group) to 2.46 ± 0.57 mL/min/kg (P = 0.0024). CONCLUSIONS: This is the first study demonstrating the protective effect of ascorbic acid against colistin-induced nephrotoxicity and tubular apoptosis. Co-administration of ascorbic acid has the potential to increase the therapeutic index of colistin.


Asunto(s)
Antibacterianos/efectos adversos , Apoptosis , Ácido Ascórbico/administración & dosificación , Colistina/efectos adversos , Enfermedades Renales/inducido químicamente , Enfermedades Renales/prevención & control , Vitaminas/administración & dosificación , Animales , Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Ácido Ascórbico/farmacología , Células Cultivadas , Colistina/administración & dosificación , Colistina/farmacocinética , Inyecciones Intravenosas , Masculino , Ratas , Ratas Sprague-Dawley , Vitaminas/farmacología
4.
Antimicrob Agents Chemother ; 55(9): 4044-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21709095

RESUMEN

Colistin-induced nephrotoxicity is a dose-limiting adverse effect when colistin is used against Gram-negative pathogens. This study examined the nephroprotective effect of melatonin against colistin in rats. Rats (n = 7 per group) were treated intravenously twice daily with saline, colistin (at increasing doses from 0.5 to 4.0 mg/kg), melatonin (5 mg/kg), or both melatonin and colistin for 7 days. The severity of renal alteration was examined both biochemically and histologically. The effect of coadministration of melatonin on colistin pharmacokinetics was investigated. Significantly lower urinary N-acetyl-ß-d-glucosaminidase excretion was observed from day 1 in the colistin-melatonin group compared to the colistin group (P < 0.0001). Plasma creatinine increased significantly (P = 0.023) only in the colistin group on day 6. Significant histological abnormalities (P < 0.0001) were detected only in the kidneys of the colistin group. Melatonin altered colistin pharmacokinetics; the total body clearance in the colistin-melatonin group (1.82 ± 0.26 ml/min/kg) was lower than in the colistin group (4.28 ± 0.93 ml/min/kg). This is the first study demonstrating the protective effect of melatonin against colistin-induced nephrotoxicity, which indicates that colistin-induced nephrotoxicity is mediated through oxidative stress. It also highlights the potential of coadministering an antioxidant to widen the therapeutic window of this very important last-line antibiotic.


Asunto(s)
Colistina/toxicidad , Riñón/efectos de los fármacos , Melatonina/uso terapéutico , Acetilglucosaminidasa/orina , Animales , Creatinina/sangre , Masculino , Ratas , Ratas Sprague-Dawley
5.
Anal Chem ; 81(1): 435-42, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19117466

RESUMEN

A new composite electrode has been fabricated using multiwall carbon nanotubes (MWCNT) and the ionic liquid n-octylpyridinum hexafluorophosphate (OPFP). This electrode shows very attractive electrochemical performances compared to other conventional electrodes using graphite and mineral oil, notably improved sensitivity and stability. One major advantage of this electrode compared to other electrodes using carbon nanotubes and other ionic liquids is its extremely low capacitance and background currents. A 10% (w/w) loading of MWCNT was selected as the optimal composition based on voltammetric results, as well as the stability of the background response in solution. The new composite electrode showed good activity toward hydrogen peroxide and NADH, with the possibility of fabricating a sensitive biosensor for glucose and alcohol using glucose oxidase and alcohol dehydrogenase, respectively, by simply incorporating the specific enzyme within the composite matrix. The marked electrode stability and antifouling features toward NADH oxidation was much higher for this composite compared to a bare glassy carbon electrode. While a loading of 2% MWCNT showed very poor electrochemical behavior, a large enhancement was observed upon gentle heating to 70 degrees C, which gave a response similar to the optimum composition of 10%. The ease of preparation, low background current, high sensitivity, stability, and small loading of nanotubes using this composite can create new novel avenues and applications for fabricating robust sensors and biosensors for many important species.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Nanotubos de Carbono/química , Compuestos de Piridinio/química , Electrodos , Glucosa/química , Grafito/química , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/química , NAD/análisis , NAD/química , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...