Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38889727

RESUMEN

How evolution at the cellular level potentiates macroevolutionary change is central to understanding biological diversification. The >66,000 rove beetle species (Staphylinidae) form the largest metazoan family. Combining genomic and cell type transcriptomic insights spanning the largest clade, Aleocharinae, we retrace evolution of two cell types comprising a defensive gland-a putative catalyst behind staphylinid megadiversity. We identify molecular evolutionary steps leading to benzoquinone production by one cell type via a mechanism convergent with plant toxin release systems, and synthesis by the second cell type of a solvent that weaponizes the total secretion. This cooperative system has been conserved since the Early Cretaceous as Aleocharinae radiated into tens of thousands of lineages. Reprogramming each cell type yielded biochemical novelties enabling ecological specialization-most dramatically in symbionts that infiltrate social insect colonies via host-manipulating secretions. Our findings uncover cell type evolutionary processes underlying the origin and evolvability of a beetle chemical innovation.

2.
bioRxiv ; 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37398185

RESUMEN

How evolution at the cellular level potentiates change at the macroevolutionary level is a major question in evolutionary biology. With >66,000 described species, rove beetles (Staphylinidae) comprise the largest metazoan family. Their exceptional radiation has been coupled to pervasive biosynthetic innovation whereby numerous lineages bear defensive glands with diverse chemistries. Here, we combine comparative genomic and single-cell transcriptomic data from across the largest rove beetle clade, Aleocharinae. We retrace the functional evolution of two novel secretory cell types that together comprise the tergal gland-a putative catalyst behind Aleocharinae's megadiversity. We identify key genomic contingencies that were critical to the assembly of each cell type and their organ-level partnership in manufacturing the beetle's defensive secretion. This process hinged on evolving a mechanism for regulated production of noxious benzoquinones that appears convergent with plant toxin release systems, and synthesis of an effective benzoquinone solvent that weaponized the total secretion. We show that this cooperative biosynthetic system arose at the Jurassic-Cretaceous boundary, and that following its establishment, both cell types underwent ∼150 million years of stasis, their chemistry and core molecular architecture maintained almost clade-wide as Aleocharinae radiated globally into tens of thousands of lineages. Despite this deep conservation, we show that the two cell types have acted as substrates for the emergence of adaptive, biochemical novelties-most dramatically in symbiotic lineages that have infiltrated social insect colonies and produce host behavior-manipulating secretions. Our findings uncover genomic and cell type evolutionary processes underlying the origin, functional conservation and evolvability of a chemical innovation in beetles.

4.
Cell ; 184(25): 6138-6156.e28, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34890552

RESUMEN

How the functions of multicellular organs emerge from the underlying evolution of cell types is poorly understood. We deconstructed evolution of an organ novelty: a rove beetle gland that secretes a defensive cocktail. We show how gland function arose via assembly of two cell types that manufacture distinct compounds. One cell type, comprising a chemical reservoir within the abdomen, produces alkane and ester compounds. We demonstrate that this cell type is a hybrid of cuticle cells and ancient pheromone and adipocyte-like cells, executing its function via a mosaic of enzymes from each parental cell type. The second cell type synthesizes benzoquinones using a chimera of conserved cellular energy and cuticle formation pathways. We show that evolution of each cell type was shaped by coevolution between the two cell types, yielding a potent secretion that confers adaptive value. Our findings illustrate how cooperation between cell types arises, generating new, organ-level behaviors.


Asunto(s)
Benzoquinonas/metabolismo , Escarabajos/metabolismo , Drosophila melanogaster/metabolismo , Feromonas/metabolismo , Animales , Evolución Biológica , Vías Biosintéticas
5.
PLoS One ; 13(11): e0207779, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30496304

RESUMEN

Overexpression of the Dual-specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A) gene contributes to the retardation, craniofacial anomalies, cognitive impairment, and learning and memory deficits associated with Down Syndrome (DS). DCAF7/HAN11/WDR68 (hereafter WDR68) binds DYRK1A and is required for craniofacial development. Accumulating evidence suggests DYRK1A-WDR68 complexes enable proper growth and patterning of multiple organ systems and suppress inappropriate cell growth/transformation by regulating the balance between proliferation and differentiation in multiple cellular contexts. Here we report, using engineered mouse C2C12 and human HeLa cell lines, that WDR68 is required for normal levels of DYRK1A. However, Wdr68 does not significantly regulate Dyrk1a mRNA expression levels and proteasome inhibition did not restore DYRK1A in cells lacking Wdr68 (Δwdr68 cells). Overexpression of WDR68 increased DYRK1A levels while overexpression of DYRK1A had no effect on WDR68 levels. We further report that WDR68 is similarly required for normal levels of the closely related DYRK1B kinase and that both DYRK1A and DYRK1B are essential for the transition from proliferation to differentiation in C2C12 cells. These findings reveal an additional role of WDR68 in DYRK1A-WDR68 and DYRK1B-WDR68 complexes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Transcripción Genética , Quinasas DyrK
6.
PLoS One ; 11(11): e0166984, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27880803

RESUMEN

Birth defects are among the leading causes of infant mortality and contribute substantially to illness and long-term disability. Defects in Bone Morphogenetic Protein (BMP) signaling are associated with cleft lip/palate. Many craniofacial syndromes are caused by defects in signaling pathways that pattern the cranial neural crest cells (CNCCs) along the dorsal-ventral axis. For example, auriculocondylar syndrome is caused by impaired Endothelin-1 (Edn1) signaling, and Alagille syndrome is caused by defects in Jagged-Notch signaling. The BMP, Edn1, and Jag1b pathways intersect because BMP signaling is required for ventral edn1 expression that, in turn, restricts jag1b to dorsal CNCC territory. In zebrafish, the scaffolding protein Wdr68 is required for edn1 expression and subsequent formation of the ventral Meckel's cartilage as well as the dorsal Palatoquadrate. Here we report that wdr68 activity is required between the 17-somites and prim-5 stages, that edn1 functions downstream of wdr68, and that wdr68 activity restricts jag1b, hey1, and grem2 expression from ventral CNCC territory. Expression of dlx1a and dlx2a was also severely reduced in anterior dorsal and ventral 1st arch CNCC territory in wdr68 mutants. We also found that the BMP agonist isoliquiritigenin (ISL) can partially rescue lower jaw formation and edn1 expression in wdr68 mutants. However, we found no significant defects in BMP reporter induction or pSmad1/5 accumulation in wdr68 mutant cells or zebrafish. The Transforming Growth Factor Beta (TGF-ß) signaling pathway is also known to be important for craniofacial development and can interfere with BMP signaling. Here we further report that TGF-ß interference with BMP signaling was greater in wdr68 mutant cells relative to control cells. To determine whether interference might also act in vivo, we treated wdr68 mutant zebrafish embryos with the TGF-ß signaling inhibitor SB431542 and found partial rescue of edn1 expression and craniofacial development. While ISL treatment failed, SB431542 partially rescued dlx2a expression in wdr68 mutants. Together these findings reveal an indirect role for Wdr68 in the BMP-Edn1-Jag1b signaling hierarchy and dorso-anterior expression of dlx1a/2a.


Asunto(s)
Tipificación del Cuerpo/fisiología , Huesos Faciales/enzimología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Nucleares/biosíntesis , Somitos/embriología , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Proteínas Nucleares/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...