RESUMEN
Two machine learning approach (i.e. Radial Basis Function Neural Network (RBF-NN) and Random Forest (RF) was developed and evaluated against a quadratic response surface model to predict the maximum removal efficiency of brilliant green (BG) from aqueous media in relation to BG concentration (4-20mgL-1), sonication time (2-6min) and ZnS-NP-AC mass (0.010-0.030g) by ultrasound-assisted. All three (i.e. RBF network, RF and polynomial) model were compared against the experimental data using four statistical indices namely, coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE) and absolute average deviation (AAD). Graphical plots were also used for model comparison. The obtained results using RBF network and RF exhibit a better performance in comparison to classical statistical model for both dyes. The significant factors were optimized using desirability function approach (DFA) combined central composite design (CCD) and genetic algorithm (GA) approach. The obtained optimal point was located in the valid region and the experimental confirmation tests were conducted showing a good accordance between the predicted optimal points and the experimental data. The properties of ZnS-NPs-AC were identified by X-ray diffraction; field emission scanning electron microscopy, energy dispersive X-ray spectroscopy (EDS) and Fourier transformation infrared spectroscopy. Various isotherm models for fitting the experimental equilibrium data were studied and Langmuir model was chosen as an efficient model. Various kinetic models for analysis of experimental adsorption data were studied and pseudo second order model was chosen as an efficient model. Moreover, ZnS nanoparticles loaded on activated carbon efficiently were regenerated using methanol and after five cycles the removal percentage do not change significantly.
RESUMEN
BACKGROUND: Substantial evidence indicates that exposure to electromagnetic fields (EMF) above certain levels can affect human health through triggering some biological responses. According to WHO, short-term exposure to EMF at the levels present in the home/environment do not cause any apparent detrimental effects in healthy individuals. However, now, there is a debate on whether long-term exposure to low level EMF can evoke detrimental biological responses. Although based on the Communications Act of 1934, selling, advertising, using, or importing mobile jammers which block cell phone calls and text messages are illegal acts, in some countries these devices are being used for security purpose and for prevention of cheating during examinations. METHODS: In this study 30 male Wistar rats were randomly divided into 3 groups of 10 each. The control group received no radiation. The sham exposure group was exposed to a switched-off jammer device. After fasting for 12 hours, the exposure group was exposed to EMFs at a distance of 50 cm from the jammer. Blood samples were collected from the tail vein after 24, 48 and72 hours and fasting blood sugar was measured by using a common blood glucose monitor (BIONIME GM110, Taiwan). The significance level was considered 5% and SPSS Ver. 21 was used for statistical analysis. The data were analyzed by ANOVA followed by Tukey's test. RESULTS: A statistically significant difference was observed between blood sugar level in the control and exposure groups after 24, 48 and 72 hours of continuous irradiation (p values were <0.001, <0.001 and 0.002, respectively). No significant difference was found between the level of fasting blood sugar in control and sham groups. CONCLUSION: Short-term exposure to electromagnetic field generated by mobile phone jammer can reduce blood sugar level in adult male rats. These findings, in contrast with our previous results, lead us to this conclusion that the use of these signal blocking devices in very specific circumstances may have some therapeutic effects. However, further studies have to be performed to find out the exact mechanism by which Jammer EMFs reduce fasting blood sugar.
RESUMEN
Mobile phone use and wireless communication technology have grown explosively over the past decades. This rapid growth has caused widespread global concern about the potential detrimental effects of this technology on human health. Stem cells generate specialized cell types of the tissue in which they reside through normal differentiation pathways. Considering the undeniable importance of stem cells in modern medicine, numerous studies have been performed on the effects of ionizing and non-ionizing radiation on cellular processes such as: proliferation, differentiation, cell cycle and DNA repair processes. We have conducted extensive studies on beneficial (stimulatory) or detrimental biological effects of exposure to different sources of electromagnetic fields such as mobile phones, mobile phone base stations, mobile phone jammers, radar systems, magnetic resonance imaging (MRI) systems and dentistry cavitrons over the past years. In this article, recent studies on the biological effects of non-ionizing electromagnetic radiation in the range of radiofrequency (RF) on some important features of stem cells such as their proliferation and differentiation are reviewed. Studies reviewed in this paper indicate that the stimulatory or inhibitory effects of RF radiation on the proliferation and differentiation of stem cells depend on various factors such as the biological systems, experiment conditions, the frequency and intensity of RF and the duration of exposure.
RESUMEN
In this study, the removal of methylene green (MG) from aqueous solution based on two new adsorbents including silver nanoparticles and zinc oxide nanorods loaded on activated carbon (Ag-NP-AC and ZnO-NR-AC, respectively) has been carried out. The dependency of removal process to variables such as contact time, pH, amount of adsorbents, and initial MG concentration were examined and optimized. It was found that the maximum MG removal percentage was achieved at pH = 7.0 following stirring at 400 r min(-1) for 7 and 6 min for Ag-NP-AC and ZnO-NR-AC, respectively. Equilibrium data were well fitted with the Langmuir model having maximum adsorption capacity of 166.7 and 200 mg g(-1) for Ag-NP-AC and ZnO-NR-AC, respectively. Thermodynamic parameters of MG adsorption on Ag-NP-AC such as enthalpy and entropy changes, activation energy, sticking probability, and Gibbs free energy changes show the spontaneous and endothermic nature of the removal process. Among different conventional kinetic models, the pseudo second-order kinetics in addition to particle diffusion mechanism is the best and efficient model for the prediction and explanation of experimental data of MG adsorption onto both adsorbents.
Asunto(s)
Carbono/química , Azul de Metileno/análogos & derivados , Nanoestructuras/química , Óxidos/química , Compuestos de Plata/química , Óxido de Zinc/química , Adsorción , Concentración de Iones de Hidrógeno , Azul de Metileno/química , Estructura Molecular , Concentración Osmolar , Temperatura , Contaminantes Químicos del Agua/química , Purificación del Agua/métodosRESUMEN
BACKGROUND AND OBJECTIVES: Antitumor drug resistance and side effects of antitumor compounds are the most common problems in medicine. Therefore, finding new antitumor agents with low side effects could be interesting. This study was designed to assay antitumor activity of the extract from brown alga Sargassum oligocystum, gathered from Persian Gulf seashore, against K562 and Daudi human cancer cell lines. MATERIALS AND METHODS: The research was performed as an in vitro study. The effect of the alga extract on proliferation of cell lines were measured by two methods: MTT assay and trypan blue exclusion test. RESULTS AND CONCLUSION: The most effective antitumor activity has been shown at concentrations 500 microg/ml and 400 microg/ml of the alga extract against Daudi and K562 cell lines, respectively. The results showed that the extracts of brown alga Sargassum oligocystum have remarkable antitumor activity against K562 and Daudi cell lines. It is justified to be suggested for further research such as algal extract fractionation and purification and in vivo studies in order to formulate natural compounds with antitumor activities.
Asunto(s)
Antineoplásicos/farmacología , Linfoma de Burkitt/tratamiento farmacológico , Leucemia Eritroblástica Aguda/tratamiento farmacológico , Sargassum/química , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , Océano Índico , Células K562RESUMEN
The Bender Gestalt test of visuomotor coordination was applied to a sample of Iranian children (N = 1,600) aged between 6.0 years and 10 years and 11 months attending grades 1 through 5 of 16 public primary schools in Shiraz city, southern Iran. The administration of the test and its scoring followed the standard procedures recommended by Koppitz. The reliability of the test in its new context was investigated through readministering it to a group of 60 children after four weeks, the r being .77. The validity of the test was established by comparing scores of children at different age levels and by correlating test results with marks obtained in two sets of examinations, results of Goodenough Harris Draw-A-Person Test and indices of parental education and occupation. The results are mostly in the expected direction and indicate that the Bender Gestalt test may be used as a simple measure of cognitive-intellectual development in Iran. Observed differences between Iranian norms and those of Koppitz (1963, 1975) for American children are briefly discussed and explained.