Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Extracell Vesicles ; 12(10): e12363, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37759347

RESUMEN

Melanoma has the highest propensity of all cancers to metastasize to the brain with a large percentage of late-stage patients developing metastases in the central nervous system (CNS). It is well known that metastasis establishment, cell survival, and progression are affected by tumour-host cell interactions where changes in the host cellular compartments likely play an important role. In this context, miRNAs transferred by tumour derived extracellular vesicles (EVs) have previously been shown to create a favourable tumour microenvironment. Here, we show that miR-146a-5p is highly expressed in human melanoma brain metastasis (MBM) EVs, both in MBM cell lines as well as in biopsies, thereby modulating the brain metastatic niche. Mechanistically, miR-146a-5p was transferred to astrocytes via EV delivery and inhibited NUMB in the Notch signalling pathway. This resulted in activation of tumour-promoting cytokines (IL-6, IL-8, MCP-1 and CXCL1). Brain metastases were significantly reduced following miR-146a-5p knockdown. Corroborating these findings, miR-146a-5p inhibition led to a reduction of IL-6, IL-8, MCP-1 and CXCL1 in astrocytes. Following molecular docking analysis, deserpidine was identified as a functional miR-146a-5p inhibitor, both in vitro and in vivo. Our results highlight the pro-metastatic function of miR-146a-5p in EVs and identifies deserpidine for targeted adjuvant treatment.


Asunto(s)
Neoplasias Encefálicas , Vesículas Extracelulares , Melanoma , MicroARNs , Humanos , Astrocitos , Interleucina-6 , Interleucina-8 , Simulación del Acoplamiento Molecular , MicroARNs/genética , Microambiente Tumoral
2.
Viruses ; 14(5)2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35632759

RESUMEN

Clinical studies in glioblastoma and pancreatic carcinoma patients strongly support the further development of H-1 protoparvovirus (H-1PV)-based anticancer therapies. The identification of cellular factors involved in the H-1PV life cycle may provide the knowledge to improve H-1PV anticancer potential. Recently, we showed that sialylated laminins mediate H-1PV attachment at the cell membrane. In this study, we revealed that H-1PV also interacts at the cell surface with galectin-1 and uses this glycoprotein to enter cancer cells. Indeed, knockdown/out of LGALS1, the gene encoding galectin-1, strongly decreases the ability of H-1PV to infect and kill cancer cells. This ability is rescued by the re-introduction of LGALS1 into cancer cells. Pre-treatment with lactose, which is able to bind to galectins and modulate their cellular functions, decreased H-1PV infectivity in a dose dependent manner. In silico analysis reveals that LGALS1 is overexpressed in various tumours including glioblastoma and pancreatic carcinoma. We show by immunohistochemistry analysis of 122 glioblastoma biopsies that galectin-1 protein levels vary between tumours, with levels in recurrent glioblastoma higher than those in primary tumours or normal tissues. We also find a direct correlation between LGALS1 transcript levels and H-1PV oncolytic activity in 53 cancer cell lines from different tumour origins. Strikingly, the addition of purified galectin-1 sensitises poorly susceptible GBM cell lines to H-1PV killing activity by rescuing cell entry. Together, these findings demonstrate that galectin-1 is a crucial determinant of the H-1PV life cycle.


Asunto(s)
Galectina 1 , Glioblastoma , Parvovirus H-1 , Viroterapia Oncolítica , Virus Oncolíticos , Línea Celular Tumoral , Galectina 1/genética , Galectina 1/metabolismo , Glioblastoma/terapia , Parvovirus H-1/fisiología , Humanos , Recurrencia Local de Neoplasia , Virus Oncolíticos/fisiología , Neoplasias Pancreáticas , Neoplasias Pancreáticas
3.
Nat Commun ; 12(1): 3834, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158478

RESUMEN

H-1 parvovirus (H-1PV) is a promising anticancer therapy. However, in-depth understanding of its life cycle, including the host cell factors needed for infectivity and oncolysis, is lacking. This understanding may guide the rational design of combination strategies, aid development of more effective viruses, and help identify biomarkers of susceptibility to H-1PV treatment. To identify the host cell factors involved, we carry out siRNA library screening using a druggable genome library. We identify one crucial modulator of H-1PV infection: laminin γ1 (LAMC1). Using loss- and gain-of-function studies, competition experiments, and ELISA, we validate LAMC1 and laminin family members as being essential to H-1PV cell attachment and entry. H-1PV binding to laminins is dependent on their sialic acid moieties and is inhibited by heparin. We show that laminins are differentially expressed in various tumour entities, including glioblastoma. We confirm the expression pattern of laminin γ1 in glioblastoma biopsies by immunohistochemistry. We also provide evidence of a direct correlation between LAMC1 expression levels and H-1PV oncolytic activity in 59 cancer cell lines and in 3D organotypic spheroid cultures with different sensitivities to H-1PV infection. These results support the idea that tumours with elevated levels of γ1 containing laminins are more susceptible to H-1PV-based therapies.


Asunto(s)
Parvovirus H-1/metabolismo , Laminina/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Virus Oncolíticos/metabolismo , Acoplamiento Viral , Internalización del Virus , Animales , Línea Celular Tumoral , Glioblastoma/patología , Glioblastoma/terapia , Glioblastoma/virología , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Laminina/genética , Ratones Endogámicos NOD , Ratones SCID , Viroterapia Oncolítica/métodos , Unión Proteica , Interferencia de ARN , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
4.
Neuro Oncol ; 21(7): 890-900, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-30958558

RESUMEN

BACKGROUND: Suicide gene therapy for malignant gliomas has shown encouraging results in the latest clinical trials. However, prodrug application was most often restricted to short-term treatment (14 days), especially when replication-defective vectors were used. We previously showed that a substantial fraction of herpes simplex virus thymidine kinase (HSV-TK) transduced tumor cells survive ganciclovir (GCV) treatment in an orthotopic glioblastoma (GBM) xenograft model. Here we analyzed whether these TK+ tumor cells are still sensitive to prodrug treatment and whether prolonged prodrug treatment can enhance treatment efficacy. METHODS: Glioma cells positive for TK and green fluorescent protein (GFP) were sorted from xenograft tumors recurring after suicide gene therapy, and their sensitivity to GCV was tested in vitro. GBM xenografts were treated with HSV-TK/GCV, HSV-TK/valganciclovir (valGCV), or HSV-TK/valGCV + erlotinib. Tumor growth was analyzed by MRI, and survival as well as morphological and molecular changes were assessed. RESULTS: TK-GFP+ tumor cells from recurrent xenograft tumors retained sensitivity to GCV in vitro. Importantly, a prolonged period (3 mo) of prodrug administration with valganciclovir (valGCV) resulted in a significant survival advantage compared with short-term (3 wk) application of GCV. Recurrent tumors from the treatment groups were more invasive and less angiogenic compared with primary tumors and showed significant upregulation of epidermal growth factor receptor (EGFR) expression. However, double treatment with the EGFR inhibitor erlotinib did not increase therapeutic efficacy. CONCLUSION: Long-term treatment with valGCV should be considered as a replacement for short-term treatment with GCV in clinical trials of HSV-TK mediated suicide gene therapy.


Asunto(s)
Antivirales/farmacología , Terapia Genética , Glioblastoma/terapia , Profármacos/farmacología , Timidina Quinasa/genética , Valganciclovir/farmacología , Adenoviridae/genética , Animales , Apoptosis , Proliferación Celular , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Glioblastoma/genética , Glioblastoma/patología , Humanos , Ratones , Invasividad Neoplásica , Simplexvirus/enzimología , Timidina Quinasa/administración & dosificación , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...