Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1344914, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585695

RESUMEN

Although the incidence of Mycobacterium abscessus infection has recently increased significantly, treatment is difficult because this bacterium is resistant to most anti-tuberculosis drugs. In particular, M. abscessus is often resistant to available macrolide antibiotics, so therapeutic options are extremely limited. Hence, there is a pressing demand to create effective drugs or therapeutic regimens for M. abscessus infections. The aim of the investigation was to assess the capability of isoegomaketone (iEMK) as a therapeutic option for treating M. abscessus infections. We determined the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of iEMK for both reference and clinically isolated M. abscessus strains. In addition to time-kill and biofilm formation assays, we evaluated iEMK's capability to inhibit M. abscessus growth in macrophages using an intracellular colony counting assay. iEMK inhibited the growth of reference and clinically isolated M. abscessus strains in macrophages and demonstrated effectiveness at lower concentrations against macrophage-infected M. abscessus than when used to treat the bacteria directly. Importantly, iEMK also exhibited anti-biofilm properties and the potential to mitigate macrolide-inducible resistance, underscoring its promise as a standalone or adjunctive therapeutic agent. Overall, our results suggest that further development of iEMK as a clinical drug candidate is promising for inhibiting M. abscessus growth, especially considering its dual action against both planktonic bacteria and biofilms.

2.
Pathogens ; 12(12)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38133329

RESUMEN

Mycobacterium peregrinum (Mpgm) is a rapidly growing mycobacteria that is classified as a nontuberculous mycobacterium (NTM) and is commonly found in environmental sources such as soil, water, and animals. Mpgm is considered an opportunistic pathogen that causes infection in immunocompromised individuals or those with underlying medical conditions. Although there have been clinical reports on Mpgm, reports of the immune response and metabolic reprogramming have not been published. Thus, we studied standard Mpgm-ATCC and two clinical strains (Mpgm-S and Mpgm-R) using macrophages and mouse bone marrow-derived cells. Mpgm has two types of colony morphologies: smooth and rough. We grew all strains on the 7H10 agar medium to visually validate the morphology. Cytokine levels were measured via ELISA and real-time PCR. The changes in mitochondrial function and glycolysis in Mpgm-infected macrophages were measured using an extracellular flux analyzer. Mpgm-S-infected macrophages showed elevated levels of inflammatory cytokines, including interleukin (IL)-6, IL-12p40, and tumor necrosis factor (TNF)-α, compared to Mpgm-ATCC- and Mpgm-R-infected macrophages. Additionally, our findings revealed metabolic changes in Mpgm-ATCC and two clinical strains (Mpgm-S and Mpgm-R) during infection; significant changes were observed in the mitochondrial respiration, extracellular acidification, and the oxygen consumption of BMDMs upon Mpgm-S infection. In summary, within the strains examined, Mpgm-S displayed greater virulence, triggered a heightened immune response, and induced more profound shifts in bioenergetic metabolism than Mpgm-ATCC and Mpgm-R. This study is the first to document distinct immune responses and metabolic reorganization following Mpgm infection. These findings lay a crucial foundation for further investigations into the pathogenesis of Mpgm.

3.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35457208

RESUMEN

Ulcerative colitis is a complex inflammatory bowel disorder disease that can induce rectal and colonic dysfunction. Although the prevalence of IBD in Western countries is almost 0.5% of the general population, genetic causes are still not fully understood. In a recent discovery, itaconate was found to function as an immune-modulating metabolite in mammalian immune cells, wherein it is synthesized as an antimicrobial compound from the citric acid cycle intermediate cis-aconitic acid. However, the association between the Acod1 (Aconitate decarboxylase 1)-itaconate axis and ulcerative colitis has rarely been studied. To elucidate this, we established a DSS-induced colitis model with Acod1-deficient mice and then measured the mouse body weights, colon lengths, histological changes, and cytokines/chemokines in the colon. We first confirmed the upregulation of Acod1 RNA and protein expression levels in DSS-induced colitis. Then, we found that colitis symptoms, including weight loss, the disease activity index, and colon shortening, were worsened by the depletion of Acod1. In addition, the extent of intestinal epithelial barrier breakdown, the extent of immune cell infiltration, and the expression of proinflammatory cytokines and chemokines in Acod1-deficient mice were higher than those in wild-type mice. Finally, we confirmed that 4-octyl itaconate (4-OI) alleviated DSS-induced colitis in Acod1-deficient mice and decreased the expression of inflammatory cytokines and chemokines. To our knowledge, this study is the first to elucidate the role of the Acod1-itaconate axis in colitis. Our data clearly showed that Acod1 deletion resulted in severe DSS-induced colitis and substantial increases in inflammatory cytokine and chemokine levels. Our results suggest that Acod1 may normally play an important regulatory role in the pathogenesis of colitis, demonstrating the potential for novel therapies using 4-OI.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedades Inflamatorias del Intestino , Animales , Carboxiliasas , Quimiocinas/genética , Colitis/inducido químicamente , Colitis/genética , Colitis/patología , Colitis Ulcerosa/patología , Colon/patología , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Humanos , Enfermedades Inflamatorias del Intestino/patología , Mamíferos/metabolismo , Ratones , Ratones Endogámicos C57BL , Sulfatos
4.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269631

RESUMEN

Mycobacterium mucogenicum (Mmuc), a rapidly growing nontuberculous mycobacterium (NTM), can infect humans (posttraumatic wound infections and catheter-related sepsis). Similar to other NTM species, Mmuc exhibits colony morphologies of rough (Mmuc-R) and smooth (Mmuc-S) types. Although there are several case reports on Mmuc infection, no experimental evidence supports that the R-type is more virulent. In addition, the immune response and metabolic reprogramming of Mmuc have not been studied on the basis of morphological characteristics. Thus, a standard ATCC Mmuc strain and two clinical strains were analyzed, and macrophages were generated from mouse bone marrow. Cytokines and cell death were measured by ELISA and FACS, respectively. Mitochondrial respiration and glycolytic changes were measured by XF seahorse. Higher numbers of intracellular bacteria were found in Mmuc-R-infected macrophages than in Mmuc-S-infected macrophages. Additionally, Mmuc-R induced higher levels of the cytokines TNF-α, IL-6, IL-12p40, and IL-10 and induced more BMDM necrotic death. Furthermore, our metabolic data showed marked glycolytic and respiratory differences between the control and each type of Mmuc infection, and changes in these parameters significantly promoted glucose metabolism, extracellular acidification, and oxygen consumption in BMDMs. In conclusion, at least in the strains we tested, Mmuc-R is more virulent, induces a stronger immune response, and shifts bioenergetic metabolism more extensively than the S-type. This study is the first to report differential immune responses and metabolic reprogramming after Mmuc infection and might provide a fundamental basis for additional studies on Mmuc pathogenesis.


Asunto(s)
Mycobacteriaceae , Infecciones por Mycobacterium no Tuberculosas , Infecciones por Mycobacterium , Animales , Citocinas/metabolismo , Inmunidad , Macrófagos/metabolismo , Ratones , Infecciones por Mycobacterium/metabolismo , Infecciones por Mycobacterium no Tuberculosas/microbiología
5.
Biosensors (Basel) ; 11(9)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34562925

RESUMEN

A series of gold (Au) nanostructures, having different morphologies, were fabricated for amperometric selective detection of carbon monoxide (CO), a biologically important signaling molecule. Au layers were electrodeposited from a precursor solution of 7 mM HAuCl4 with a constant deposition charge (0.04 C) at various deposition potentials. The obtained Au nanostructures became rougher and spikier as the deposition potential lowered from 0.45 V to 0.05 V (vs. Ag/AgCl). As prepared Au layers showed different hydrophobicity: The sharper morphology, the greater hydrophobicity. The Au deposit formed at 0.05 V had the sharpest shape and the greatest surface hydrophobicity. The sensitivity of an Au deposit for amperometric CO sensing was enhanced as the Au surface exhibits higher hydrophobicity. In fact, CO selectivity over common electroactive biological interferents (L-ascorbic acid, 4-acetamidophenol, 4-aminobutyric acid and nitrite) was improved eminently once the Au deposit became more hydrophobic. The most hydrophobic Au was also confirmed to sense CO exclusively without responding to nitric oxide, another similar gas signaling molecule, in contrast to a hydrophobic platinum (Pt) counterpart. This study presents a feasible strategy to enhance the sensitivity and selectivity for amperometric CO sensing via the fine control of Au electrode nanostructures.


Asunto(s)
Técnicas Electroquímicas , Galvanoplastia , Nanoestructuras , Técnicas Biosensibles , Monóxido de Carbono , Electrodos , Glucosa , Oro/química , Límite de Detección , Platino (Metal)
6.
Nanoscale ; 13(32): 13776-13785, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34477652

RESUMEN

A variety of binary Ru-Co mixed oxide nanotubes (RuxCo1-xOy with x = 0.19, 0.33, 0.47, 0.64 and 0.77) were readily synthesized via electrospinning and subsequent calcination. RuxCo1-xOy nanotubes (0 < x < 0.77) were composed of both rutile (Ru in RuO2 is replaced with Co) and spinel (Co in Co3O4 is replaced with Ru) structures. This elemental substitution created oxygen vacancies in the rutile structure and also resulted in the incorporation of Ru3+ in the octahedral sites of the spinel structure. The as-prepared RuxCo1-xOy nanotubes were investigated for oxygen evolution reaction (OER) electrocatalytic activity in 1.0 M HClO4 aqueous solution. RuxCo1-xOy nanotubes with x≥ 0.47 presented an excellent OER activity comparable to pure RuO2, known to be the best OER catalyst. Even after more than half of the noble/active Ru content was replaced with cheap/less-active Co, Ru0.47Co0.53Oy showed a good OER activity and a greatly improved stability compared to RuO2 under the continuous OER. These attractive catalytic properties of RuxCo1-xOy can be attributed to the relatively large surface area of the tubular morphology and the substituted structures, presenting feasibility as a practical and economical OER catalyst.

7.
Molecules ; 25(19)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036475

RESUMEN

Background: Preterm birth is a known leading cause of neonatal mortality and morbidity. The underlying causes of pregnancy-associated complications are numerous, but infection and inflammation are the essential high-risk factors. However, there are no safe and effective preventive drugs that can be applied to pregnant women. Objective: The objectives of the study were to investigate a natural product, Abeliophyllum distichum leaf (ADL) extract, to examine the possibility of preventing preterm birth caused by inflammation. Methods: We used a mouse preterm birth model by intraperitoneally injecting lipopolysaccharides (LPS). ELISA, Western blot, real-time PCR and immunofluorescence staining analyses were performed to confirm the anti-inflammatory efficacy and related mechanisms of the ADL extracts. Cytotoxicity and cell death were measured using Cell Counting Kit-8 (CCK-8) analysis and flow cytometer. Results: A daily administration of ADL extract significantly reduced preterm birth, fetal loss, and fetal growth restriction after an intraperitoneal injection of LPS in mice. The ADL extract prevented the LPS-induced expression of TNF-α in maternal serum and amniotic fluid and attenuated the LPS-induced upregulation of placental proinflammatory genes, including IL-1ß, IL-6, IL-12p40, and TNF-α and the chemokine gene CXCL-1, CCL-2, CCL3, and CCL-4. LPS-treated THP-1 cell-conditioned medium accelerated trophoblast cell death, and TNF-α played an essential role in this effect. The ADL extract reduced LPS-treated THP-1 cell-conditioned medium-induced trophoblast cell death by inhibiting MAPKs and the NF-κB pathway in macrophages. ADL extract prevented exogenous TNF-α-induced increased trophoblast cell death and decreased cell viability. Conclusions: We have demonstrated that the inhibition of LPS-induced inflammation by ADL extract can prevent preterm birth, fetal loss, and fetal growth restriction.


Asunto(s)
Glucósidos/química , Lipopolisacáridos/toxicidad , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Oleaceae/química , Fenoles/química , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química , Nacimiento Prematuro/inducido químicamente , Nacimiento Prematuro/prevención & control , Factor de Necrosis Tumoral alfa/farmacología , Animales , Muerte Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Femenino , Masculino , Ratones , Trofoblastos/citología , Trofoblastos/metabolismo
8.
Nanomaterials (Basel) ; 10(6)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531899

RESUMEN

The nanotubular structures of IrO2 and Ir metal were successfully synthesized without any template. First, IrO2 nanotubes were prepared by electrospinning and post-calcination, where a fine control of synthetic conditions (e.g., precursor concentration and solvent composition in electrospinning solution, temperature increasing rate for calcination) was required. Then, a further thermal treatment of IrO2 nanotubes under hydrogen gas atmosphere produced Ir metal nanotubes. The electroactivity of the resultant Ir metal nanotubes was investigated toward carbon monoxide (CO) oxidation using linear sweep voltammetry (LSV) and amperometry. The anodic current response of Ir metal nanotubes was linearly proportional to CO concentration change, with a high sensitivity and a short response time. The amperometric sensitivity of Ir metal nanotubes for CO sensing was greater than a nanofibrous counterpart (i.e., Ir metal nanofibers) and commercial Pt (20 wt% Pt loading on carbon). Density functional theory calculations support stronger CO adsorption on Ir(111) than Pt(111). This study demonstrates that metallic Ir in a nanotubular structure is a good electrode material for the amperometric sensing of CO.

9.
ACS Appl Mater Interfaces ; 11(50): 46886-46893, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31815407

RESUMEN

RhCo alloy nanotubes were synthesized via the reduction of single-phase Co2RhO4 nanotubes. The reduction was conducted by thermal annealing of the Co2RhO4 nanotubes under hydrogen gas flow. The crystallinity of the prepared RhCo alloy nanotubes depended on the reduction temperature: amorphous phase (200 °C reduction) and the crystalline phase (300 °C reduction). The hydrogen evolution reaction (HER) on RhCo alloys was investigated with voltammetry in 1.0 M HClO4 solution. Amorphous RhCo alloys provided lower overpotential than the crystalline counterpart despite their similar morphology and composition. Of great interest, amorphous RhCo alloy nanotubes exhibited an outstanding HER electroactivity verified with a low overpotential at -10 mA cm-2 (-22 mV) and a small Tafel slope (-24.1 mV dec-1), outperforming commercial Pt, pure Rh metal, and the other previously reported Rh-based catalysts. This excellent HER activity of amorphous RhCo nanotubes was attributed to the amorphous structure having a large electrochemical surface area and maximized Rh-Co interfaces in the alloy facilitating HER. Active but expensive Rh alloyed with less active but cheap Co was successfully demonstrated as a potential cost-effective HER catalyst.

10.
Sensors (Basel) ; 19(15)2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31357512

RESUMEN

By means of electrospinning with the thermal annealing process, we investigate a highly efficient sensing platform driven by a hierarchical hetero-nanostructure for the sensitive detection of biologically relevant molecules, consisting of single crystalline ruthenium dioxide nanorods (RuO2 NRs) directly grown on the surface of electrospun tungsten trioxide nanofibers (WO3 NFs). Electrochemical measurements reveal the enhanced electron transfer kinetics at the prepared RuO2 NRs-WO3 NFs hetero-nanostructures due to the incorporation of conductive RuO2 NRs nanostructures with a high surface area, resulting in improved relevant electrochemical sensing performances for detecting H2O2 and L-ascorbic acid with high sensitivity.


Asunto(s)
Ácido Ascórbico/aislamiento & purificación , Técnicas Biosensibles , Técnicas Electroquímicas , Peróxido de Hidrógeno/aislamiento & purificación , Ácido Ascórbico/química , Peróxido de Hidrógeno/química , Nanofibras/química , Nanoestructuras/química , Nanotubos/química , Óxidos/química , Compuestos de Rutenio/química , Tungsteno/química
11.
Nanoscale ; 11(23): 11379, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31162520

RESUMEN

Correction for 'Single phase of spinel Co2RhO4 nanotubes with remarkably enhanced catalytic performance for the oxygen evolution reaction' by So Yeon Kim et al., Nanoscale, 2019, 11, 9287-9295.

12.
Nanoscale ; 11(19): 9287-9295, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31049518

RESUMEN

We report the effective crystal growth for a unique single phase of spinel cobalt rhodium oxide (Co2RhO4) nanotubes via the electrospinning process combined with the thermal annealing process. In the spinel structure of the electrospun Co2RhO4 nanotubes, Co3+ cations and Rh3+ cations randomly occupy the octahedral sites, while the remaining half of the Co2+ cations occupy the centres of the tetrahedral sites as proved by microscopic and spectroscopic observations. Furthermore, electrospun spinel Co2RhO4 nanotubes exhibit excellent catalytic performances with the least positive onset potential, greatest current density, and low Tafel slope which are even better than those of the commercial Ir/C electrocatalyst for the oxygen evolution reaction (OER) in alkaline solution. Our demonstration of significantly enhanced OER activity with a single phase of electrospun spinel Co2RhO4 nanotubes thus opens up the broad applicability of our synthetic methodology for accessing new OER catalysis.

13.
ACS Appl Mater Interfaces ; 11(2): 1979-1987, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30582793

RESUMEN

Nanocomposites of gold (Au) and iridium (Ir) oxide with various compositions (denoted as Au xIr1- xO y, x = 0.05, 0.10, or 0.33, Au precursor molar ratio to Ir precursor) were synthesized via electrospinning and subsequent calcination method with two different solvent composition ratios of ethanol to N, N-dimethylformamide (DMF) in the electrospinning solution (ethanol/DMF = 70:30 or 50:50% v/v). Simple single-step electrospinning successfully fabricated a hierarchical nanostructure having Au nanoparticles formed on fibrous main frames of Ir/IrO2. Different solvent composition in the electrospinning solution induced the formation of main frames with distinct nanostructures; nanoribbons (Au xIr1- xO y-70) with ethanol/DMF = 70:30; and nanofibers (Au xIr1- xO y-50) with ethanol/DMF = 50:50. The pure Ir or Au counterparts (IrO y and Au) were also prepared by the same synthetic procedure as Au xIr1- xO y. Oxygen evolution reaction (OER) activities of as-synthesized Au xIr1- xO y were investigated in 0.5 M H2SO4 and compared to those of IrO y, Au, and commercial iridium (Ir/C, 20% Ir loading on Vulcan carbon). Among them, Au0.10Ir0.90O y-50 exhibited the best OER activity, even better than previously reported catalysts containing both Ir and Au. The high OER activity of Au0.10Ir0.90O y-50 was mainly attributed to the fiber frame structure and the optimal interfacial areas between Au and Ir/IrO2, which are electrophilic OER active sites. The stability of Au0.10Ir0.90O y-50 was also evaluated to be much higher than that of Ir/C during OER. The current study suggests that the presence of Au on the Ir/IrO2 surface improves the OER activity of Ir/IrO2.

14.
Nanotechnology ; 29(17): 175702, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29438103

RESUMEN

NiO/NiCo2O4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (∼20 m2 g-1) than expected for a flat-surface structure (<15 m2 g-1). Herein, we present a study of the catalytic activity of our novel NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo2O4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo2O4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo2O4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.

15.
ACS Appl Mater Interfaces ; 10(1): 541-549, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29250950

RESUMEN

Electrochemical hydrogen evolution reaction (HER) has been an interesting research topic in terms of the increasing need of renewable and alternative energy conversion devices. In this article, IrxRu1-xOy (y = 0 or 2) nanofibers with diverse compositions of Ir/IrO2 and RuO2 are synthesized by electrospinning and calcination procedures. Their HER activities are measured in 1.0 M NaOH. Interestingly, the HER activities of IrxRu1-xOy nanofibers improve gradually during repetitive cathodic potential scans for HER, and then eventually reach the steady-state consistencies. This cathodic activation is attributed to the transformation of the nanofiber surface oxides to the metallic alloy. Among a series of IrxRu1-xOy nanofibers, the cathodically activated Ir0.80Ru0.20Oy shows the best HER activity and stability even compared with IrOy and RuOy, commercial Pt and commercial Ir (20 wt % each metal loading on Vulcan carbon), where a superior stability is possibly ascribed to the instant generation of active Ir and Ru metals on the catalyst surface upon HER. Density functional theory calculation results for hydrogen adsorption show that the energy and adsorbate-catalyst distance at metallic Ir0.80Ru0.20 are close to those at Pt. This suggests that mixed metallic Ir and Ru are significant contributors to the improved HER activity of Ir0.80Ru0.20Oy after the cathodic activation. The present findings clearly demonstrate that the mixed oxide of Ir and Ru is a very effective electrocatalytic system for HER.

16.
ACS Appl Mater Interfaces ; 9(40): 35057-35066, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28920424

RESUMEN

Here, we report the unique transformation of one-dimensional tubular mixed oxide nanocomposites of iridium (Ir) and cobalt (Co) denoted as IrxCo1-xOy, where x is the relative Ir atomic content to the overall metal content. The formation of a variety of IrxCo1-xOy (0 ≤ x ≤ 1) crystalline tubular nanocomposites was readily achieved by electrospinning and subsequent calcination process. Structural characterization clearly confirmed that IrxCo1-xOy polycrystalline nanocomposites had a tubular morphology consisting of Ir/IrO2 and Co3O4, where Ir, Co, and O were homogeneously distributed throughout the entire nanostructures. The facile formation of IrxCo1-xOy nanotubes was mainly ascribed to the inclination of Co3O4 to form the nanotubes during the calcination process, which could play a critical role in providing a template of tubular structure and facilitating the formation of IrO2 by being incorporated with Ir precursors. Furthermore, the electroactivity of obtained IrxCo1-xOy nanotubes was characterized for oxygen evolution reaction (OER) with rotating disk electrode voltammetry in 1 M NaOH aqueous solution. Among diverse IrxCo1-xOy, Ir0.46Co0.54Oy nanotubes showed the best OER activity (the least-positive onset potential, greatest current density, and low Tafel slope), which was even better than that of commercial Ir/C. The Ir0.46Co0.54Oy nanotubes also exhibited a high stability in alkaline electrolyte. Expensive Ir mixed with cheap Co at an optimum ratio showed a greater OER catalytic activity than pure Ir oxide, one of the most efficient OER catalysts.

17.
ACS Appl Mater Interfaces ; 8(48): 32833-32841, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27934168

RESUMEN

This paper reports the synthesis and characterization of silver-cobalt (AgCo) bimetallic composite nanotubes. Cobalt oxide (Co3O4) nanotubes were fabricated by electrospinning and subsequent calcination in air and then reduced to cobalt (Co) metal nanotubes via further calcination under a H2/Ar atmosphere. As-prepared Co nanotubes were then employed as templates for the following galvanic replacement reaction (GRR) with silver (Ag) precursor (AgNO3), which produced AgCo composite nanotubes. Various AgCo nanotubes were readily synthesized with applying different reaction times for the reduction of Co3O4 nanotubes and GRR. One hour reduction was sufficiently long to convert Co3O4 to Co metal, and 3 h GRR was enough to deposit Ag layer on Co nanotubes. The tube morphology and copresence of Ag and Co in AgCo composite nanotubes were confirmed with SEM, HRTEM, XPS, and XRD analyses. Electroactivity of as-prepared AgCo composite nanotubes was characterized for ORR with rotating disk electrode (RDE) voltammetry. Among differently synthesized AgCo composite nanotubes, the one synthesized via 1 h reduction and 3 h GRR showed the best ORR activity (the most positive onset potential, greatest limiting current density, and highest number of electrons transferred). Furthermore, the ORR performance of the optimized AgCo composite nanotubes was superior compared to pure Co nanotubes, pure Ag nanowires, and bare platinum (Pt). High ethanol tolerance of AgCo composite nanotubes was also compared with the commercial Pt/C and then verified its excellent resistance to ethanol contamination.

18.
Planta Med ; 82(7): 606-11, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26891000

RESUMEN

Rice bran, a by-product of brown rice milling, is a rich source of dietary fiber and protein, and its usage as a functional food is expected to increase. In this study, immunomodulatory effects of glycoprotein obtained from rice bran were studied in normal mice and mouse models of cyclophosphamide-induced immunosuppression. We prepared glycoprotein from rice bran by using ammonium precipitation and anion chromatography techniques. Different doses of glycoprotein from rice bran (10, 25, and 50 mg/kg) were administered orally for 28 days. On day 21, cyclophosphamide at a dose of 100 mg/kg was administered intraperitoneally. Glycoprotein from rice bran showed a significant dose-dependent restoration of the spleen index and white blood cell count in the immunocompromised mice. Glycoprotein from rice bran affected the immunomodulatory function by inducing the proliferation of splenic lymphocytes, which produce potential T and B cells. Moreover, it prevented cyclophosphamide-induced damage of Th1-type immunomodulatory function through enhanced secretion of Th1-type cytokines (interferon-γ and interleukin-12). These results indicate that glycoprotein from rice bran significantly recovered cyclophosphamide-induced immunosuppression. Based on these data, it was concluded that glycoprotein from rice bran is a potent immunomodulator and can be developed to recover the immunity of immunocompromised individuals.


Asunto(s)
Glicoproteínas/aislamiento & purificación , Factores Inmunológicos/aislamiento & purificación , Oryza/química , Animales , Fibras de la Dieta , Femenino , Glicoproteínas/farmacología , Tolerancia Inmunológica/efectos de los fármacos , Factores Inmunológicos/farmacología , Ratones , Ratones Endogámicos BALB C , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
19.
Nutrients ; 7(6): 4154-69, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26035243

RESUMEN

The objective of this study was to investigate major dietary patterns among older Korean adults through cluster analysis and to determine an association between dietary patterns and cognitive function. This is a cross-sectional study. The data from the Korean Multi-Rural Communities Cohort Study was used. Participants included 765 participants aged 60 years and over. A quantitative food frequency questionnaire with 106 items was used to investigate dietary intake. The Korean version of the MMSE-KC (Mini-Mental Status Examination-Korean version) was used to assess cognitive function. Two major dietary patterns were identified using K-means cluster analysis. The "MFDF" dietary pattern indicated high consumption of Multigrain rice, Fish, Dairy products, Fruits and fruit juices, while the "WNC" dietary pattern referred to higher intakes of White rice, Noodles, and Coffee. Means of the total MMSE-KC and orientation score of the participants in the MFDF dietary pattern were higher than those of the WNC dietary pattern. Compared with the WNC dietary pattern, the MFDF dietary pattern showed a lower risk of cognitive impairment after adjusting for covariates (OR 0.64, 95% CI 0.44-0.94). The MFDF dietary pattern, with high consumption of multigrain rice, fish, dairy products, and fruits may be related to better cognition among Korean older adults.


Asunto(s)
Pueblo Asiatico , Cognición/fisiología , Conducta Alimentaria , Anciano , Índice de Masa Corporal , Peso Corporal , Análisis por Conglomerados , Estudios Transversales , Productos Lácteos , Ingestión de Energía , Femenino , Frutas , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis Multivariante , República de Corea , Encuestas y Cuestionarios , Granos Enteros
20.
Eur J Nutr ; 54(2): 309-18, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24842708

RESUMEN

PURPOSE: The objectives of this study were to identify major dietary patterns and to investigate the association between dietary patterns and cognitive function in older adults. METHODS: This is a cross-sectional study. The data from the Korean Multi-Rural Communities Cohort Study, which is a part of the Korean Genome Epidemiology Study, were used. There were 806 (340 men and 466 women) subjects aged ≥ 60 years. Usual dietary intake was assessed using a quantitative food frequency questionnaire with 106 food items. Cognitive function was assessed using the Korean version Mini-Mental State Examination (MMSE-KC). We conducted factor analysis using the principal component analysis method to identify the major dietary patterns. The association between major dietary patterns and cognitive function was investigated by logistic regression analysis. RESULTS: Three major dietary patterns were identified and assigned descriptive names based on the food items with high loadings: "prudent" pattern, "bread, egg, and dairy" pattern, and "white rice only" pattern. As the white rice only pattern scores increased, a significant decreasing trend for MMSE-KC scores was observed after adjusting for covariates. The bread, egg, and dairy pattern was inversely related to the risk of cognitive impairment, and the white rice only pattern was positively associated with the risk of cognitive impairment. CONCLUSIONS: This study suggests that specific dietary patterns were significantly associated with cognitive impairment in older adults. In particular, like the white rice only pattern, a rice-centered diet without well-balanced meals may increase the risk of cognitive impairment. However, since our study is a cross-sectional design, the possibility of reverse causality should be considered.


Asunto(s)
Envejecimiento , Disfunción Cognitiva/etiología , Dieta/efectos adversos , Fenómenos Fisiológicos Nutricionales del Anciano , Política Nutricional , Cooperación del Paciente , Salud Rural , Anciano , Anciano de 80 o más Años , Envejecimiento/etnología , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/etnología , Disfunción Cognitiva/prevención & control , Estudios de Cohortes , Estudios Transversales , Dieta/etnología , Femenino , Manipulación de Alimentos , Humanos , Masculino , Persona de Mediana Edad , Encuestas Nutricionales , Oryza/efectos adversos , Cooperación del Paciente/etnología , Análisis de Componente Principal , Escalas de Valoración Psiquiátrica , República de Corea/epidemiología , Factores de Riesgo , Salud Rural/etnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...