Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13063, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844824

RESUMEN

Colorectal cancer (CRC) is a prevalent global health issue, with 5-fluorouracil (5-FU) being a commonly used chemotherapeutic agent for its treatment. However, the efficacy of 5-FU is often hindered by drug tolerance. Sodium butyrate (NaB), a derivative of intestinal flora, has demonstrated anti-cancer properties both in vitro and in vivo through pro-apoptotic effects and has shown promise in improving outcomes when used in conjunction with traditional chemotherapy agents. This study seeks to evaluate the impact and potential mechanisms of NaB in combination with 5-FU on CRC. We employed a comprehensive set of assays, including CCK-8, EdU staining, Hoechst 33258 staining, flow cytometry, ROS assay, MMP assay, immunofluorescence, and mitophagy assay, to detect the effect of NaB on the biological function of CRC cells in vitro. Western blotting and immunohistochemistry were used to verify the above experimental results. The xenograft tumor model was established to evaluate the in vivo anti-CRC activity of NaB. Subsequently, 16S rRNA gene sequencing was used to analyze the intestinal flora. The findings of our study demonstrate that sodium butyrate (NaB) exerts inhibitory effects on tumor cell proliferation and promotes tumor cell apoptosis in vitro, while also impeding tumor progression in vivo through the enhancement of the mitophagy pathway. Furthermore, the combined treatment of NaB and 5-fluorouracil (5-FU) yielded superior therapeutic outcomes compared to monotherapy with either agent. Moreover, this combination therapy resulted in the specific enrichment of Bacteroides, LigiLactobacillus, butyric acid-producing bacteria, and acetic acid-producing bacteria in the intestinal microbiota. The improvement in the intestinal microbiota contributed to enhanced therapeutic outcomes and reduced the adverse effects of 5-FU. Taken together, these findings indicate that NaB, a histone acetylation inhibitor synthesized through intestinal flora fermentation, has the potential to significantly enhance the therapeutic efficacy of 5-FU in CRC treatment and improve the prognosis of CRC patients.


Asunto(s)
Ácido Butírico , Proliferación Celular , Neoplasias Colorrectales , Fluorouracilo , Microbioma Gastrointestinal , Transducción de Señal , Ubiquitina-Proteína Ligasas , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Ácido Butírico/farmacología , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Ratones , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Apoptosis/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Ratones Desnudos , Sinergismo Farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
2.
Clin Res Hepatol Gastroenterol ; 48(5): 102336, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604293

RESUMEN

BACKGROUND: Metabolic associated fatty liver disease (MAFLD) is a prevalent chronic liver condition globally, currently lacking universally recognized therapeutic drugs, thereby increasing the risk of cirrhosis and hepatocellular carcinoma. Research has reported an association between white adipose tissue and MAFLD. SCOPE OF REVIEW: White adipose tissue (WAT) is involved in lipid metabolism and can contribute to the progression of MAFLD by mediating insulin resistance, inflammation, exosomes, autophagy, and other processes. This review aims to elucidate the mechanisms through which WAT plays a role in the development of MAFLD. MAJOR CONCLUSIONS: WAT participates in the occurrence and progression of MAFLD by mediating insulin resistance, inflammation, autophagy, and exosome secretion. Fibrosis and restricted expansion of adipose tissue can lead to the release of more free fatty acids (FFA), exacerbating the progression of MAFLD. WAT-secreted TNF-α and IL-1ß, through the promotion of JNK/JKK/p38MAPK expression, interfere with insulin receptor serine and tyrosine phosphorylation, worsening insulin resistance. Adiponectin, by inhibiting the TLR-4-NF-κB pathway and suppressing M2 to M1 transformation, further inhibits the secretion of IL-6, IL-1ß, and TNF-α, improving insulin resistance in MAFLD patients. Various gene expressions within WAT, such as MBPAT7, Nrf2, and Ube4A, can ameliorate insulin resistance in MAFLD patients. Autophagy-related gene Atg7 promotes the expression of fibrosis-related genes, worsening MAFLD. Non-pharmacological treatments, including diabetes-related medications and exercise, can improve MAFLD.


Asunto(s)
Tejido Adiposo Blanco , Resistencia a la Insulina , Humanos , Tejido Adiposo Blanco/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Autofagia , Inflamación/metabolismo , Progresión de la Enfermedad , Exosomas/metabolismo , Metabolismo de los Lípidos
3.
Clin Nutr ; 43(6): 1291-1298, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663050

RESUMEN

BACKGROUND & AIMS: Although biologics were prescribed to achieve and maintain clinical remission of active Crohn's disease (CD), almost half of patients experienced a loss of response or intolerance. Here, we investigated the efficacy of combined treatment of biologics and 16-weeks exclusive enteral nutrition (EEN) in moderate-to-severe CD patients with small intestine lesions. METHODS: This was a real-world, multicenter retrospective study, from October 2016 to March 2023, medical records of patients registered at three IBD centers were reviewed for patients with ileal or ileocolonic CD in moderate-to-severe activity. All patients received treatment of biologics with concomitant 16-week EEN (BioEEN) or biologics alone (Bio). The clinical outcomes and endoscopic outcomes were assessed at week 16 and 52. RESULTS: There was no statistically significant difference between Bio (97 patients) and BioEEN group (100 patients) at baseline for demographic and clinical characteristics. Compared to treatment with biologics alone, patients with BioEEN treatment achieved higher rates of clinical response (95.0% vs. 66.0%), clinical remission (87.0% vs. 52.6%), endoscopic response (91.4% vs. 47.4%) including mucosal healing (85.7% vs. 23.7%) at week 16. The superiority of BioEEN sustained in maintenance, with 84.7% (vs. 49.1%) clinical response, 77.8% (vs. 38.6%) clinical remission, 69.2% (vs. 32.6%) endoscopic response and 51.9% (vs. 18.6%) mucosal healing at week 52. CONCLUSIONS: Combined treatment of biologics and 16-week EEN was an efficient therapeutic strategy with affirmative effectiveness for small intestine diseases of active CD.


Asunto(s)
Productos Biológicos , Enfermedad de Crohn , Nutrición Enteral , Humanos , Enfermedad de Crohn/terapia , Nutrición Enteral/métodos , Masculino , Femenino , Estudios Retrospectivos , Adulto , Productos Biológicos/administración & dosificación , Productos Biológicos/uso terapéutico , Resultado del Tratamiento , Persona de Mediana Edad , Terapia Combinada/métodos , Íleon , Adulto Joven , Inducción de Remisión/métodos
4.
Phytomedicine ; 128: 155316, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518635

RESUMEN

BACKGROUND: Gastric cancer (GC) represents a significant health burden with dire prognostic implications upon metastasis and recurrence. Pterostilbene (PTE) has been proven to have a strong ability to inhibit proliferation and metastasis in other cancers, while whether PTE exhibits anti-GC activity and its potential mechanism remain unclear. PURPOSE: To explore the efficacy and potential mechanism of PTE in treating GC. METHODS: We employed a comprehensive set of assays, including CCK-8, EdU staining, colony formation, flow cytometry, cell migration, and invasion assays, to detect the effect of PTE on the biological function of GC cells in vitro. The xenograft tumor model was established to evaluate the in vivo anti-GC activity of PTE. Network pharmacology was employed to predict PTE's potential targets and pathways within GC. Subsequently, Western blotting, immunofluorescence, and immunohistochemistry were utilized to analyze protein levels related to the cell cycle, EMT, and the JAK2/STAT3 pathway. RESULTS: Our study demonstrated strong inhibitory effects of PTE on GC cells both in vitro and in vivo. In vitro, PTE significantly induced cell cycle arrest at G0/G1 and S phases and suppressed proliferation, migration, and invasion of GC cells. In vivo, PTE led to a dose-dependent reduction in tumor volume and weight. Importantly, PTE exhibited notable safety, leaving mouse weight, liver function, and kidney function unaffected. The involvement of the JAK2/STAT3 pathway in PTE's anti-GC effect was predicted utilizing network pharmacology. PTE suppressed JAK2 kinase activity by binding to the JH1 kinase structural domain and inhibited the downstream STAT3 signaling pathway. Western blotting confirmed PTE's inhibition of the JAK2/STAT3 pathway and EMT-associated protein levels. The anti-GC effect was partially reversed upon STAT3 activation, validating the pivotal role of the JAK2/STAT3 signaling pathway in PTE's activity. CONCLUSION: Our investigation validates the potent inhibitory effects of PTE on the proliferation and metastasis of GC cells. Importantly, we present novel evidence implicating the JAK2/STAT3 pathway as the key mechanism through which PTE exerts its anti-GC activity. These findings not only establish the basis for considering PTE as a promising lead compound for GC therapeutics but also contribute significantly to our comprehension of the intricate molecular mechanisms underlying its exceptional anti-cancer properties.


Asunto(s)
Movimiento Celular , Proliferación Celular , Janus Quinasa 2 , Ratones Desnudos , Factor de Transcripción STAT3 , Transducción de Señal , Estilbenos , Neoplasias Gástricas , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Estilbenos/farmacología , Animales , Humanos , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C , Ratones , Antineoplásicos Fitogénicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Farmacología en Red , Masculino , Metástasis de la Neoplasia , Transición Epitelial-Mesenquimal/efectos de los fármacos
5.
Inflamm Bowel Dis ; 30(6): 992-1008, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38422244

RESUMEN

BACKGROUND: The currently available clinical therapeutic drugs for ulcerative colitis (UC) are considered inadequate owing to certain limitations. There have been reports on the anti-inflammatory effects of 2'-hydroxycinnamaldehyde (HCA). However, whether HCA can improve UC is still unclear. Here, we aimed to investigate the pharmacological effects of HCA on UC and its underlying molecular mechanisms. METHODS: The pharmacological effects of HCA were comprehensively investigated in 2 experimental setups: mice with dextran sulfate sodium (DSS)-induced colitis and lipopolysaccharide (LPS)-treated fetal human colon (FHC) cells. Furthermore, the interaction between HCA and signal transducer and activator of transcription 3 (STAT3) was investigated using molecular docking. The FHC cells with STAT3 knockdown or overexpression and mice with intestinal epithelium-specific STAT3 deletion (STAT3ΔIEC) were used to evaluate whether STAT3 mediated the pharmacological effects of HCA. RESULTS: 2'-Hydroxycinnamaldehyde attenuated dysregulated expression of inflammatory cytokines in a dose-dependent manner while increasing the expression of tight junction proteins, reducing the apoptosis of intestinal epithelial cells, and effectively alleviating inflammation both in vivo and in vitro. 2'-Hydroxycinnamaldehyde bound directly to STAT3 and inhibited its activation. The modulation of STAT3 activation levels due to STAT3 knockdown or overexpression influenced the mitigating effects of HCA on colitis. Further analysis indicated that the remission effect of HCA was not observed in STAT3ΔIEC mice, indicating that STAT3 mediated the anti-inflammatory effects of HCA. CONCLUSIONS: We present a novel finding that HCA reduces colitis severity by attenuating intestinal mucosal barrier damage via STAT3. This discovery holds promise as a potential new strategy to alleviate UC.


The current clinical therapeutic drugs for ulcerative colitis (UC) remain inadequate owing to certain adverse events. Administration of 2ʹ-hydroxycinnamaldehyde (HCA) significantly reduces colitis severity via direct inhibition of STAT3 to attenuate intestinal mucosal barrier damage. Hence, HCA may be a potential new strategy in UC.


Asunto(s)
Sulfato de Dextran , Mucosa Intestinal , Factor de Transcripción STAT3 , Factor de Transcripción STAT3/metabolismo , Animales , Ratones , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Humanos , Sulfato de Dextran/toxicidad , Ratones Endogámicos C57BL , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Masculino , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Cinamatos/farmacología , Simulación del Acoplamiento Molecular , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos , Citocinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...