Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Gene Ther ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127832

RESUMEN

Gastric cancer (GC) is characterized with differentiation disorders, the precise mechanisms of which remain unknown. Our previous study showed that PHF10 exhibits oncogenic properties in GC, with its histological presentation indicating a potential role in the modulation of differentiation disorders in GC. This study reveals a significant upregulation of PHF10 in GC tissues, showing a negative correlation with differentiation level. PHF10 was found to impede the differentiation of GC cells while promoting their stemness properties. This was attributed to the formation of a positive feedback loop between PHF10 and E2F1, resulting in dysregulated expression levels in GC. Additionally, PHF10 was found to mediate the transcriptional repression of the target gene DUSP5 in GC cells through the assembly of the SWI/SNF complex, leading to an elevation in pERK1/2 levels. In GC tissues, a negative association was noted between the expression of E2F1 or PHF10 and DUSP5, whereas a positive correlation was observed between the expression of E2F1 or PHF10 and pERK1/2. Additional rescue experiments confirmed that the inhibitory effect on differentiation of GC cells by PHF10 is dependent on the DUSP5-pERK1/2 axis. The signaling cascade involving E2F1-PHF10-DUSP5-pERK1/2 was identified as an important player in regulating differentiation and stemness in GC cells. PHF10 emerges as a promising target for differentiation induction therapy in GC.

2.
Cancer Cell Int ; 24(1): 167, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734676

RESUMEN

BACKGROUND: Accumulating evidences indicate that the specific alternative splicing (AS) events are linked to the occurrence and prognosis of gastric cancer (GC). Nevertheless, the impact of AS is still unclear and needed to further elucidation. METHODS: The expression profile of GC and normal samples were downloaded from TCGA. AS events were achieved from SpliceSeq database. Cox regression together with LASSO analysis were employed to identify survival-associated AS events (SASEs) and calculate risk scores. PPI and pathway enrichment analysis were implemented to determine the function and pathways of these genes. Kaplan-Meier (K-M) analysis and Receiver Operating Characteristic Curves were used to evaluate the clinical significance of genes of SASEs. Q-PCR were applied to validate the hub genes on the survival prognosis in 47 GC samples. Drug sensitivity and immune cell infiltration analysis were conducted. RESULTS: In total, 48 140 AS events in 10 610 genes from 361 GC and 31 normal samples were analyzed. Through univariate Cox regression, 855 SASEs in 763 genes were screened out. Further, these SASEs were analyzed by PPI and 17 hub genes were identified. Meanwhile, using Lasso and multivariate Cox regression analysis, 135 SASEs in 132 genes related to 7 AS forms were further screened and a GC prognostic model was constructed. K-M curves indicates that high-risk group has poorer prognosis. And the nomogram analysis on the basis of the multivariate Cox analysis was disclosed the interrelationships between 7 AS forms and clinical parameters in the model. Five key genes were then screened out by PPI analysis and Differential Expression Gene analysis based on TCGA and Combined-dataset, namely STAT3, RAD51B, SOCS2, POLE2 and TSR1. The expression levels of AS in STAT3, RAD51B, SOCS2, POLE2 and TSR1 were all significantly correlated with survival by qPCR verification. Nineteen drugs were sensitized to high-risk patients and eight immune cells showed significantly different infiltration between the STAD and normal groups. CONCLUSIONS: In this research, the prognostic model constructed by SASEs can be applied to predict the prognosis of GC patients and the selected key genes are expected to become new biomarkers and therapeutical targets for GC treatment.

3.
Heliyon ; 10(7): e29109, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38601625

RESUMEN

PHD finger protein 10 (PHF10) plays an important role in the tumorigenesis of gastric cancer (GC). However, clinical significance and underlying molecular mechanisms about PHF10 is unclear. In the article, it suggested that PHF10 involved in tumor progression and metastasis based on the analysis of datasets and 190 cases of tumor tissues in GC. And PHF10 provided the diagnostic value with areas under the receiver operating characteristics curve of 0.71 ± 0.069. Then we established GC cell lines MKN28 with PHF10 overexpression and SGC7901 with PHF10 knockdown. CCK8 assay and tumor xenograft experiment showed that upregulation of PHF10 could promote MKN28 cell proliferation, while PHF10 knockdown would inhibit the proliferation of SGC7901 in vitro and vivo. Nevertheless, PHF10 could upregulate CD44 mRNA expression by acting on its promoter at the level of transcription. This effect could be associated with BRG, BAF155 and SNF5, which were conserved subunits of switch/sucrose non-fermentable (SWI/SNF) complex. In conclusion, PHF10 targeting CD44 plays an essential part during the modulation of proliferation of GC cell and may offer a new therapeutic direction for GC.

4.
Int J Biol Sci ; 20(4): 1314-1331, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385088

RESUMEN

Peritoneal metastasis (PM) continues to limit the clinical efficacy of gastric cancer (GC). Early growth response 1 (EGR1) plays an important role in tumor cell proliferation, angiogenesis and invasion. However, the role of EGR1 derived from the tumor microenvironment in reshaping the phenotypes of GC cells and its specific molecular mechanisms in increasing the potential for PM are still unclear. In this study, we reported that EGR1 was significantly up-regulated in mesothelial cells from GC peritoneal metastases, leading to enhanced epithelial-mesenchymal transformation (EMT) and stemness phenotypes of GC cells under co-culture conditions. These phenotypes were achieved through the transcription and secretion of TGF-ß1 by EGR1 in mesothelial cells, which could regulate the expression and internalization of CD44s. After being internalized into the cytoplasm, CD44s interacted with STAT3 to promote STAT3 phosphorylation and activation, and induced EMT and stemness gene transcription, thus positively regulating the metastasis of GC cells. Moreover, TGF-ß1 secretion in the PM microenvironment was significantly increased compared with the matched primary tumor. The blocking effect of SHR-1701 on TGF-ß1 was verified by inhibiting peritoneal metastases in xenografts. Collectively, the interplay of EGR1/TGF-ß1/CD44s/STAT3 signaling between mesothelial cells and GC cells induces EMT and stemness phenotypes, offering potential as a therapeutic target for PM of GC.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz , Neoplasias Peritoneales , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Movimiento Celular , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Peritoneo/patología , Transducción de Señal/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Microambiente Tumoral/genética , Animales
5.
J Exp Clin Cancer Res ; 42(1): 269, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858201

RESUMEN

BACKGROUND: Important roles of INHBB in various malignancies are increasingly identified. The underlying mechanisms in gastric cancer (GC) microenvironment are still greatly unexplored. METHODS: The clinical significance of INHBB and the correlation between INHBB and p-p65 in GC were assessed through analyzing publicly available databases and human paraffin embedded GC tissues. The biological crosstalk of INHBB between GC cells and fibroblasts was explored both in vitro and in vivo. RNA-seq analyses were performed to determine the mechanisms which regulating fibroblasts reprogramming. Luciferase reporter assay and chromatin immunoprecipitation (CHIP) assay were used to verify the binding relationship of p65 and INHBB in GC cells. RESULTS: Our study showed that INHBB level was significantly higher in GC, and that increased INHBB was associated with poor survival. INHBB positively regulates the proliferation, migration, and invasion of GC cells in vitro. Also, activin B promotes the occurrence of GC by reprogramming fibroblasts into cancer-associated fibroblasts (CAFs). The high expression of INHBB in GC cells activates the NF-κB pathway of normal gastric fibroblasts by secreting activin B, and promotes fibroblasts proliferation, migration, and invasion. In addition, activin B activates NF-κB pathway by controlling TRAF6 autoubiquitination to induce TAK1 phosphorylation in fibroblasts. Fibroblasts activated by activin B can induce the activation of p65 phosphorylation of GC cells by releasing pro-inflammatory factors IL-1ß. p65 can directly bind to the INHBB promoter and increase the INHBB transcription of GC cells, thus establishing a positive regulatory feedback loop to promote the progression of GC. CONCLUSIONS: GC cells p65/INHBB/activin B and fibroblasts p65/IL-1ß signal loop led to the formation of a whole tumor-promoting inflammatory microenvironment, which might be a promising therapeutic target for GC.


Asunto(s)
Activinas , Fibroblastos , FN-kappa B , Neoplasias Gástricas , Microambiente Tumoral , Humanos , Línea Celular Tumoral , Fibroblastos/metabolismo , FN-kappa B/metabolismo , Neoplasias Gástricas/patología , Microambiente Tumoral/fisiología , Activinas/metabolismo
6.
Biochem Pharmacol ; 217: 115849, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37806457

RESUMEN

Cancer stem cells (CSCs) have been proposed to explain tumor relapse and chemoresistance in various types of cancers, and androgen receptor (AR) has been emerged as a potential regulator of stemness in cancers. However, the underlying mechanism of AR-regulated CSCs properties and chemoresistance in gastric cancer (GC) remains unknown. Here, we shown that AR is upregulated in GC tissues and correlates with poor survival rate and CSCs phenotypes of GC patients. According to our experimental data, overexpression of AR upregulated the expression of CSCs markers and this was consistent with the result concluded from data analysis that the expression of AR was positively correlated with CD44 in GC patients. In addition, AR overexpression obviously enhanced the tumor sphere formation ability and chemoresistance of GC cells in vitro. Whereas these effects were attenuated by inhibition of AR. These results were further validated in vivo that MGC-803 cells overexpressing AR had stronger properties to initiate gastric tumorigenesis than the control cells, and inhibition of AR increased the chemosensitivity of GC cells. Mechanically, AR upregulated CD44 expression by directly binding to its promoter region and Yes-associated protein 1 (YAP1) served as the co-factor of AR, which was demonstrated by the fact that the promoting effects of AR on GC cells stemness were partially counteracted by YAP1 knockdown. Thus, this study revealed that AR facilitates CSCs properties and chemoresistance of GC cells via forming complex with YAP1and indicates a potential therapeutic approach to GC patients.


Asunto(s)
Receptores Androgénicos , Neoplasias Gástricas , Proteínas Señalizadoras YAP , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/metabolismo
7.
Adv Sci (Weinh) ; 10(34): e2303091, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863665

RESUMEN

Erlotinib, an EGFR tyrosine kinase inhibitor, is used for treating patients with cancer exhibiting EGFR overexpression or mutation. However, the response rate of erlotinib is low among patients with gastric cancer (GC). The findings of this study illustrated that the overexpression of bromodomain PHD finger transcription factor (BPTF) is partially responsible for erlotinib resistance in GC, and the combination of the BPTF inhibitor AU-1 with erlotinib synergistically inhibited tumor growth both in vivo and in vitro. AU-1 inhibited the epigenetic function of BPTF and decreased the transcriptional activity of c-MYC on PLCG1 by attenuating chromosome accessibility of the PLCG1 promoter region, thus decreasing the expression of p-PLCG1 and p-Erk and eventually improving the sensitivity of GC cells to erlotinib. In patient-derived xenograft (PDX) models, AU-1 monotherapy exhibited remarkable tumor-inhibiting activity and is synergistic anti-tumor effects when combined with erlotinib. Altogether, the findings illustrate that BPTF affects the responsiveness of GC to erlotinib by epigenetically regulating the c-MYC/PLCG1/pErk axis, and the combination of BPTF inhibitors and erlotinib is a viable therapeutic approach for GC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neoplasias Gástricas , Humanos , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Fosfolipasa C gamma/farmacología
8.
Redox Biol ; 67: 102923, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37832398

RESUMEN

As the predominant immunosuppressive component within the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) inhibit Natural Killer cell (NK cell) activity to promote tumor progression and immune escape; however, the mechanisms of cross-talk between CAFs and NK cells in gastric cancer (GC) remain poorly understood. In this study, we demonstrate that NK cell levels are inversely correlated with CAFs abundance in human GC. CAFs impair the anti-tumor capacity of NK cells by inducing ferroptosis, a cell death process characterized by the accumulation of iron-dependent lipid peroxides. CAFs induce ferroptosis in NK cells by promoting iron overload; conversely, decreased intracellular iron levels protect NK cells against CAF-induced ferroptosis. Mechanistically, CAFs increase the labile iron pool within NK cells via iron export into the TME, which is mediated by the upregulated expression of iron regulatory genes ferroportin1 and hephaestin in CAFs. Moreover, CAF-derived follistatin like protein 1(FSTL1) upregulates NCOA4 expression in NK cells via the DIP2A-P38 pathway, and NCOA4-mediated ferritinophagy is required for CAF-induced NK cell ferroptosis. In a human patient-derived organoid model, functional targeting of CAFs using a combination of deferoxamine and FSTL1-neutralizing antibody significantly alleviate CAF-induced NK cell ferroptosis and boost the cytotoxicity of NK cells against GC. This study demonstrates a novel mechanism of suppression of NK cell activity by CAFs in the TME and presents a potential therapeutic approach to augment the immune response against GC mediated by NK cells.


Asunto(s)
Antineoplásicos , Fibroblastos Asociados al Cáncer , Ferroptosis , Proteínas Relacionadas con la Folistatina , Neoplasias Gástricas , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Proteínas Relacionadas con la Folistatina/metabolismo , Neoplasias Gástricas/metabolismo , Hierro/metabolismo , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/patología , Antineoplásicos/farmacología , Microambiente Tumoral
9.
EBioMedicine ; 89: 104451, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36738481

RESUMEN

BACKGROUND: Vacuolar protein sorting-associated protein 35 (VPS35) is a core component of the retromer complex which mediates intracellular protein transport. It is well known that dysfunctional VPS35 functions in the accumulation of pathogenic proteins. In our previous study, VPS35 was found to be a potential gene related to poor prognosis in gastric cancer. However, the biological functions of VPS35 in gastric cancer remain unclear. METHODS: Cell viability assays were performed to examine whether VPS35 affected cell proliferation. Immunoprecipitation and biotin assays showed that VPS35 bound to epidermal growth factor receptor (EGFR) in the cytoplasm and recycled it to the cell surface. Patient-derived xenografts and organoids were used to evaluate the effect of VPS35 on the response of gastric cancer to EGFR inhibitors. FINDINGS: VPS35 expression levels were upregulated in tumour tissues and correlated with local tumour invasion and poor survival in patients with gastric cancer. VPS35 promoted cell proliferation and increased tumour growth. Mechanistically, VPS35 selectively bound to endocytosed EGFR in early endosomes and recycled it back to the cell surface, leading to the downstream activation of the ERK1/2 pathway. We also found that high VPS35 expression levels increased the sensitivity of the xenograft and organoid models to EGFR inhibitors. INTERPRETATION: VPS35 promotes cell proliferation by recycling EGFR to the cell surface, amplifying the network of receptor trafficking. VPS35 expression levels are positively correlated with gastric cancer sensitivity to EGFR inhibitors, which offers a potential method to stratify patients for EGFR inhibitor utilisation. FUNDING: National Natural Science Foundation of China.


Asunto(s)
Neoplasias Gástricas , Proteínas de Transporte Vesicular , Humanos , Proteínas Portadoras/metabolismo , Proliferación Celular , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Neoplasias Gástricas/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
10.
Matrix Biol ; 115: 1-15, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36423735

RESUMEN

The mechanical microenvironment regulated by cancer-associated fibroblasts (CAFs) influence tumor progression. Chemotherapeutic interventions including 5-Fluorouracil (5-Fu) are commonly used for primary treatment of patients with advanced gastric cancer (GC), and the development of acquired resistance to 5-Fu limits the clinical efficacy of these chemotherapies. However, if and how the interplay between CAFs and the mechanical microenvironment regulates GC response to 5-Fu is poorly understood. In this study, we demonstrate that high-level expression of calponin 1(CNN1) in gastric CAFs predicts poor clinical outcomes of GC patients, especially for those treated with 5-Fu. CNN1 knockdown in CAFs improves the effectiveness of 5-Fu in reducing tumor growth in a mouse GC model and confers increased sensitivity to 5-Fu in a 3D culture system. Furthermore, CNN1 knockdown impairs CAF contraction and reduces matrix stiffness without affecting the expression of matrix proteins. Mechanistically, CNN1 interacts with PDZ and LIM Domain 7 (PDLIM7) and prevents its degradation by the E3 ubiquitin ligase NEDD4-1, which leads to activation of the ROCK1/MLC pathway. The increased matrix stiffness, in turn, contributes to 5-Fu resistance in GC cells by activating YAP. Taken together, our data reveal a critical role of the mechanical microenvironment in 5-Fu resistance, which is modulated by CNN1hi CAFs-mediated matrix stiffening, indicating that targeting CAFs may provide a novel option for overcoming drug resistance in GC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Gástricas , Animales , Ratones , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Resistencia a Antineoplásicos/genética , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Fluorouracilo/farmacología , Fluorouracilo/metabolismo , Fluorouracilo/uso terapéutico , Microambiente Tumoral , Calponinas
11.
Transl Oncol ; 27: 101577, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36332599

RESUMEN

BACKGROUND: Adjuvant chemotherapy (ACT) with 5-FU alone or 5-FU plus platinum after curative surgery improves the prognosis of pStage II-III gastric cancer (GC). However, only a subset of patients benefits from adjuvant platinum. To avoid the side effects of platinum, it is significant to accurately screen the patients who would benefit maximally with this treatment. The present study aimed to assess the value of DKK1 in predicting the benefit of adjuvant platinum chemotherapy in patients with pStage II -III GC. METHODS: Platinum sensitivity-related genes were screened by bioinformatics. DKK1 expression in 380 GC specimens was detected by immunohistochemistry (IHC) staining, and the correlation with adjuvant platinum-specific benefits were analyzed. RESULTS: DKK1 was screened as the most significant platinum sensitivity-related gene. In patients with DKK1high GC, the estimated absolute 5-year overall survival (OS) benefits from adjuvant platinum for pStage II-III, II, IIIA, IIIB, and IIIC were 25.5%, 17.3%, 36.4%, 29.2% and 31.1%, respectively, and the estimated absolute 5-year disease-free survival (DFS) benefits in the corresponding stages were 27.4%, 17.5%, 36.7%, 29.7% and 31.5%, respectively. These benefits were significantly higher than those in the same TNM stage without adjusting for DKK1 status. The performance of DKK1 was independent of the TNM stage and other clinicopathological variables. Similar results were obtained in the TCGA and ACRG cohorts. Furthermore, nomograms were constructed to predict the survival benefits in DKK1 subgroups. CONCLUSIONS: The stratification strategy based on DKK1 status is more precise than the TNM staging system for the selection of pStage II-III GC patients suitable for platinum-containing ACT.

12.
J Cancer ; 13(14): 3566-3574, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36484007

RESUMEN

Background: Gastric cancer (GC) is characterized by tissue invasion and metastasis, which lead to an aggressive and highly lethal disease. However, the underlying molecular mechanism remains largely unclear. Although multiple miRNAs are known to regulate crucial cellular events during cancer metastasis, their individual roles are still not fully described. Methods: miR-29c overexpressed cell lines were constructed. The wound healing, migration and invasion assays were performed to investigate the effect of miR-29c on metastasis of GC. HUVECs proliferation and tube formation assays were used to test the ability of angiogenesis of miR-29c. The target gene VEGFA was predicted by bioinformatic algorithms and validated by luciferase activity assay. Peritoneal spreading and pulmonary metastasis mice models were applied in vivo. Results: In the current study, we report the results that introduction of exogenous miR-29c inhibits GC cell migration, invasion and angiogenesis. Epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) properties are participated in the miR-29c mediated cell metastasis. Furthermore, by performing tumor metastasis PCR array and luciferase reporter assay, we find that the expression of VEGFA is regulated by miR-29c through direct targeting of its 3'-UTR. In addition, we show that the VEGFA/VEGFR2/ERK pathway is involved in this process. Conclusion: These data taken together reveal the crucial functions of miR-29c-VEGFA/VEGFR2/ERK signaling axis in the metastasis progression of GC via regulating EMT and CSCs properties, which make them potential targets for clinical intervention in GC.

14.
Front Immunol ; 13: 983632, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032070

RESUMEN

Increasing evidence has elucidated that the tumor microenvironment (TME) shows a strong association with tumor progression and therapeutic outcome. We comprehensively estimated the TME infiltration patterns of 111 gastric cancer (GC) and 21 normal stomach mucosa samples based on bulk transcriptomic profiles based on which GC could be clustered as three subtypes, TME-Stromal, TME-Mix, and TME-Immune. The expression data of TME-relevant genes were utilized to build a GC prognostic model-GC_Score. Among the three GC TME subtypes, TME-Stomal displayed the worst prognosis and the highest GC_Score, while TME-Immune had the best prognosis and the lowest GC_Score. Connective tissue growth factor (CTGF), the highest weighted gene in the GC_Score, was found to be overexpressed in GC. In addition, CTGF exhibited a significant correlation with the abundance of fibroblasts. CTGF has the potential to induce transdifferentiation of peritumoral fibroblasts (PTFs) to cancer-associated fibroblasts (CAFs). Beyond characterizing TME subtypes associated with clinical outcomes, we correlated TME infiltration to molecular features and explored their functional relevance, which helps to get a better understanding of carcinogenesis and therapeutic response and provide novel strategies for tumor treatments.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Gástricas , Humanos , Pronóstico , Transcriptoma , Microambiente Tumoral
15.
Mol Med ; 28(1): 41, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35421923

RESUMEN

BACKGROUND: The mechanisms of Gastric cancer (GC) initiation and progression are complicated, at least partly owing to the dynamic changes of gene regulation during carcinogenesis. Thus, investigations on the changes in regulatory networks can improve the understanding of cancer development and provide novel insights into the molecular mechanisms of cancer. METHODS: Differential co-expression analysis (DCEA), differential gene regulation network (GRN) modeling and differential regulation analysis (DRA) were integrated to detect differential transcriptional regulation events between gastric normal mucosa and cancer samples based on GSE54129 dataset. Cytological experiments and IHC staining assays were used to validate the dynamic changes of CREB1 regulated targets in different stages. RESULTS: A total of 1955 differentially regulated genes (DRGs) were identified and prioritized in a quantitative way. Among the top 1% DRGs, 14 out of 19 genes have been reported to be GC relevant. The four transcription factors (TFs) among the top 1% DRGs, including CREB1, BPTF, GATA6 and CEBPA, were regarded as crucial TFs relevant to GC progression. The differentially regulated links (DRLs) around the four crucial TFs were then prioritized to generate testable hypotheses on the differential regulation mechanisms of gastric carcinogenesis. To validate the dynamic alterations of gene regulation patterns of crucial TFs during GC progression, we took CREB1 as an example to screen its differentially regulated targets by using cytological and IHC staining assays. Eventually, TCEAL2 and MBNL1 were proved to be differentially regulated by CREB1 during tumorigenesis of gastric cancer. CONCLUSIONS: By combining differential networking information and molecular cell experiments verification, testable hypotheses on the regulation mechanisms of GC around the core TFs and their top ranked DRLs were generated. Since TCEAL2 and MBNL1 have been reported to be potential therapeutic targets in SCLC and breast cancer respectively, their translation values in GC are worthy of further investigation.


Asunto(s)
Neoplasias Gástricas , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Neoplasias Gástricas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
EBioMedicine ; 69: 103436, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34157484

RESUMEN

BACKGROUND: Due to the molecular mechanism complexity and heterogeneity of gastric cancer (GC), mechanistically interpretable biomarkers were required for predicting prognosis and discovering therapeutic targets for GC patients. METHODS: Based on a total of 824 GC-specific fitness genes from the Project Score database, LASSOCox regression was performed in TCGA-STAD cohort to construct a GC Prognostic (GCP) model which was then evaluated on 7 independent GC datasets. Targets prioritization was performed in GC organoids. ARGLU1 was selected to further explore the biological function and molecular mechanism. We evaluated the potential of ARGLU1 serving as a promising therapeutic target for GC using patients derived xenograft (PDX) model. FINDINGS: The 9-gene GCP model showed a statistically significant prognostic performance for GC patients in 7 validation cohorts. Perturbation of SSX4, DDX24, ARGLU1 and TTF2 inhibited GC organoids tumor growth. The results of tissue microarray indicated lower expression of ARGLU1 was correlated with advanced TNM stage and worse overall survival. Over-expression ARGLU1 significantly inhibited GC cells viability in vitro and in vivo. ARGLU1 could enhance the transcriptional level of mismatch repair genes including MLH3, MSH2, MSH3 and MSH6 by potentiating the recruitment of SP1 and YY1 on their promoters. Moreover, inducing ARGLU1 by LNP-formulated saRNA significantly inhibited tumor growth in PDX model. INTERPRETATION: Based on genome-wide functional screening data, we constructed a 9-gene GCP model with satisfactory predictive accuracy and mechanistic interpretability. Out of nine prognostic genes, ARGLU1 was verified to be a potential therapeutic target for GC. FUNDING: National Natural Science Foundation of China.


Asunto(s)
Biomarcadores de Tumor/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Gástricas/genética , Transcriptoma , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Células Cultivadas , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Organoides/crecimiento & desarrollo , Organoides/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Neoplasias Gástricas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba
17.
Mol Ther Nucleic Acids ; 23: 1288-1303, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33717650

RESUMEN

Tumor metastasis is a crucial impediment to the treatment of gastric cancer (GC), and the epithelial-to-mesenchymal transition (EMT) program plays a critical role for the initiation of GC metastasis. Thus, the aim of this study is to investigate the regulation of lnc-CTSLP4 in the EMT process during GC progression. We found that lnc-CTSLP4 was significantly downregulated in GC tumor tissues compared with adjacent non-tumor tissues, and its levels in GC tumor tissues were closely correlated with tumor local invasion, TNM stage, lymph node metastasis, and prognosis of GC patients. Loss- and gain-of-function assays indicated that lnc-CTSLP4 inhibited GC cell migration, invasion, and EMT in vitro, as well as peritoneal dissemination in vivo. Mechanistic analysis demonstrated that lnc-CTSLP4 could bind with Hsp90α/heterogeneous nuclear ribonucleoprotein AB (HNRNPAB) complex and recruit E3-ubiquitin ligase ZFP91 to induce the degradation of HNRNPAB, thus suppressing the transcriptional activation of Snail and ultimately reversing EMT of GC cells. Taken together, our results suggest that lnc-CTSLP4 is significantly downregulated in GC tumor tissues and inhibits metastatic potential of GC cells by attenuating HNRNPAB-dependent Snail transcription via interacting with Hsp90α and recruiting E3 ubiquitin ligase ZFP91, which shows that lnc-CTSLP4 could serve as a prognostic biomarker and therapeutic target for metastatic GC.

18.
FASEB J ; 35(4): e20649, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33715234

RESUMEN

Adenosine triphosphate (ATP) in the tumor microenvironment serves a vital role during tumor progression. ATP synthase F1 ß subunit (ATP5B) is one of the most important subunits of ATP synthase and increases cellular ATP levels. ATP5B reportedly participates in carcinogenesis in several tumors. However, the regulatory mechanisms of ATP5B remain poorly understood in gastric cancer (GC). Here, we determined that high ATP5B expression in tumor tissues of GC is positively correlated with age, the tumor size, the TNM stage, lymph node metastasis, and patients' poor prognosis. The overexpression of ATP5B in GC cells elevated the cellular ATP content and promoted migration, invasion and proliferation. The levels of MMP2 expression, phosphorylated FAK, and phosphorylated AKT were increased after ATP5B overexpression in GC cells. Additionally, ATP5B overexpression increased the extracellular ATP level through the secretion of intracellular ATP and activated the FAK/AKT/MMP2 signaling pathway. ATP5B-induced downstream pathway activation was induced through the plasma membrane P2X7 receptor. Inhibitors of P2X7, FAK, AKT, and MMP2 suppressed the proliferative, migratory, and invasive capabilities of GC cells. In conclusion, our experiments indicate that ATP5B contributes to tumor progression of GC via FAK/AKT/MMP2 pathway. ATP5B, therefore, may be a biomarker of poor prognosis and a potential therapeutic target for GC.


Asunto(s)
Quinasa 1 de Adhesión Focal/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Quinasa 1 de Adhesión Focal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/genética , Ratones , Persona de Mediana Edad , ATPasas de Translocación de Protón Mitocondriales/genética , Neoplasias Experimentales , Neoplasias Peritoneales/secundario , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Neoplasias Gástricas/patología , Análisis de Matrices Tisulares , Regulación hacia Arriba
19.
Oncogene ; 38(10): 1764-1777, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30382189

RESUMEN

Pancreatic cancer, mostly pancreatic ductal adenocarcinomas (PDAC), is one of the most lethal cancers, with a dismal median survival around 8 months. PDAC is notoriously resistant to chemotherapy. Thus far, numerous attempts using novel targeted therapies and immunotherapies yielded limited clinical benefits for pancreatic cancer patients. It is hoped that delineating the molecular mechanisms underlying drug resistance in pancreatic cancer may provide novel therapeutic options. Using acquired gemcitabine resistant pancreatic cell lines, we revealed an important role of the GLI-SOX2 signaling axis for regulation of gemcitabine sensitivity in vitro and in animal models. Down-regulation of GLI transcriptional factors (GLI1 or GLI2), but not SMO signaling inhibition, reduces tumor sphere formation, a characteristics of tumor initiating cell (TIC). Down-regulation of GLI transcription factors also decreased expression of TIC marker CD24. Similarly, high SOX2 expression is associated with gemcitabine resistance whereas down-regulation of SOX2 sensitizes pancreatic cancer cells to gemcitabine treatment. We further revealed that elevated SOX2 expression is associated with an increase in GLI1 or GLI2 expression. Our ChIP assay revealed that GLI proteins are associated with a putative Gli binding site within the SOX2 promoter, suggesting a more direct regulation of SOX2 by GLI transcription factors. The relevance of our findings to human disease was revealed in human cancer specimens. We found that high SOX2 protein expression is associated with frequent tumor relapse and poor survival in stage II PDAC patients (all of them underwent gemcitabine treatment), indicating that reduced SOX2 expression or down-regulation of GLI transcription factors may be effective in sensitizing pancreatic cancer cells to gemcitabine treatment.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Resistencia a Antineoplásicos , Proteínas Nucleares/genética , Neoplasias Pancreáticas/patología , Factores de Transcripción SOXB1/genética , Proteína con Dedos de Zinc GLI1/genética , Proteína Gli2 con Dedos de Zinc/genética , Animales , Sitios de Unión , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Desoxicitidina/análogos & derivados , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Trasplante de Neoplasias , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Factores de Transcripción SOXB1/química , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Análisis de Supervivencia , Regulación hacia Arriba , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína Gli2 con Dedos de Zinc/metabolismo , Gemcitabina
20.
Mol Carcinog ; 57(11): 1608-1615, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30074279

RESUMEN

Colorectal cancer is a leading cause of cancer-related death worldwide. While early stage colorectal cancer can be removed by surgery, patients with advanced disease are treated by chemotherapy, with 5-Fluorouracil (5-FU) as a main ingredient. However, most patients with advanced colorectal cancer eventually succumb to the disease despite some responded initially. Thus, identifying molecular mechanisms responsible for drug resistance will help design novel strategies to treat colorectal cancer. In this study, we analyzed an acquired 5-FU resistant cell line, LoVo-R, and determined that elevated expression of YAP target genes is a major alteration in the 5-FU resistant cells. Hippo/YAP signaling, a pathway essential for cell polarity, is an important regulator for tissue homeostasis, organ size, and stem cells. We demonstrated that knockdown of YAP1 sensitized LoVo-R cells to 5-FU treatment in cultured cells and in mice. The relevance of our studies to colorectal cancer patients is reflected by our discovery that high expression of YAP target genes in the tumor was associated with an increased risk of cancer relapse and poor survival in a larger cohort of colorectal cancer patients who underwent 5-FU-related chemotherapy. Taken together, we demonstrate a critical role of YAP signaling for drug resistance in colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Resistencia a Antineoplásicos , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Antimetabolitos Antineoplásicos/farmacología , Biomarcadores de Tumor , Proteínas de Ciclo Celular , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Fluorouracilo/farmacología , Técnicas de Inactivación de Genes , Vía de Señalización Hippo , Humanos , Estimación de Kaplan-Meier , Ratones , Proteínas Nucleares/genética , Pronóstico , ARN Interferente Pequeño/genética , Recurrencia , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...