RESUMEN
SARS-CoV-2 has been evolving into a large number of variants, including the highly pathogenic Delta variant, and the currently prevalent Omicron subvariants with extensive evasion capability, which raises an urgent need to develop new broad-spectrum neutralizing antibodies. Herein, we engineer two IgG-(scFv)2 form bispecific antibodies with overlapping epitopes (bsAb1) or non-overlapping epitopes (bsAb2). Both bsAbs are significantly superior to the parental monoclonal antibodies in terms of their antigen-binding and virus-neutralizing activities against all tested circulating SARS-CoV-2 variants including currently dominant JN.1. The bsAb1 can efficiently neutralize all variants insensitive to parental monoclonal antibodies or the cocktail with IC50 lower than 20â ng/mL, even slightly better than bsAb2. Furthermore, the cryo-EM structures of bsAb1 in complex with the Omicron spike protein revealed that bsAb1 with overlapping epitopes effectively locked the S protein, which accounts for its conserved neutralization against Omicron variants. The bispecific antibody strategy engineered from overlapping epitopes provides a novel solution for dealing with viral immune evasion.
Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Epítopos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/farmacología , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/inmunología , Humanos , Anticuerpos Antivirales/inmunología , Epítopos/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , COVID-19/inmunología , COVID-19/virología , COVID-19/prevención & control , Pruebas de NeutralizaciónRESUMEN
The Hendra and Nipah viruses (HNVs) are highly pathogenic pathogens without approved interventions for human use. In addition, the interaction pattern between the attachment (G) and fusion (F) glycoproteins required for virus entry remains unclear. Here, we isolate a panel of Macaca-derived G-specific antibodies that cross-neutralize HNVs via multiple mechanisms. The most potent antibody, 1E5, confers adequate protection against the Nipah virus challenge in female hamsters. Crystallography demonstrates that 1E5 has a highly similar binding pattern to the receptor. In cryo-electron microscopy studies, the tendency of 1E5 to bind to the upper or lower heads results in two distinct quaternary structures of G. Furthermore, we identify the extended outer loop ß1S2-ß1S3 of G and two pockets on the apical region of fusion (F) glycoprotein as the essential sites for G-F interactions. This work highlights promising drug candidates against HNVs and contributes deeper insights into the viruses.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Microscopía por Crioelectrón , Infecciones por Henipavirus , Proteínas Virales de Fusión , Animales , Anticuerpos Neutralizantes/inmunología , Femenino , Anticuerpos Antivirales/inmunología , Infecciones por Henipavirus/virología , Infecciones por Henipavirus/inmunología , Proteínas Virales de Fusión/inmunología , Proteínas Virales de Fusión/química , Humanos , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/química , Virus Nipah/inmunología , Internalización del Virus/efectos de los fármacos , Henipavirus/inmunología , Cricetinae , Reacciones Cruzadas/inmunología , Virus Hendra/inmunología , Macaca , Mesocricetus , Cristalografía por Rayos XRESUMEN
Nipah virus (NiV) is a World Health Organization priority pathogen and there are currently no approved drugs for clinical immunotherapy. Through the use of a naïve human phage-displayed Fab library, two neutralizing antibodies (NiV41 and NiV42) targeting the NiV receptor binding protein (RBP) were identified. Following affinity maturation, antibodies derived from NiV41 display cross-reactivity against both NiV and Hendra virus (HeV), whereas the antibody based on NiV42 is only specific to NiV. Results of immunogenetic analysis reveal a correlation between the maturation of antibodies and their antiviral activity. In vivo testing of NiV41 and its mature form (41-6) show protective efficacy against a lethal NiV challenge in hamsters. Furthermore, a 2.88 Å Cryo-EM structure of the tetrameric RBP and antibody complex demonstrates that 41-6 blocks the receptor binding interface. These findings can be beneficial for the development of antiviral drugs and the design of vaccines with broad spectrum against henipaviruses.
Asunto(s)
Infecciones por Henipavirus , Virus Nipah , Humanos , Anticuerpos Neutralizantes/metabolismo , Virus Nipah/metabolismo , Anticuerpos AntiviralesRESUMEN
Rift Valley fever virus (RVFV) is listed as a priority pathogen by the World Health Organization (WHO) because it causes serious and fatal disease in humans, and there are currently no effective countermeasures. Therefore, it is urgent to develop a safe and efficacious vaccine. Here, we developed six nucleotide-modified mRNA vaccines encoding different regions of the Gn and Gc proteins of RVFV encapsulated in lipid nanoparticles, compared their ability to induce immune responses in mice and found that mRNA vaccine encoding the full-length Gn and Gc proteins had the strongest ability to induce cellular and humoral immune responses. IFNAR(-/-) mice vaccinated with mRNA-GnGc were protected from lethal RVFV challenge. In addition, mRNA-GnGc induced high levels of neutralizing antibodies and cellular responses in rhesus macaques, as well as antigen-specific memory B cells. These data demonstrated that mRNA-GnGc is a potent and promising vaccine candidate for RVFV.
RESUMEN
SARS-CoV-2, a type of respiratory virus, has exerted a great impact on global health and economy over the past three years. Antibody-based therapy was initially successful but later failed due to the accumulation of mutations in the spike protein of the virus. Strategies that enable antibodies to resist virus escape are therefore of great significance. Here, we engineer a bispecific SARS-CoV-2 neutralizing nanobody in secretory Immunoglobulin A (SIgA) format, named S2-3-IgA2m2, which shows broad and potent neutralization against SARS-CoV-1, SARS-CoV-2 and its variants of concern (VOCs) including XBB and BQ.1.1. S2-3-IgA2m2 is â¼1800-fold more potent than its parental IgG counterpart in neutralizing XBB. S2-3-IgA2m2 is stable in mouse lungs at least for three days when administrated by nasal delivery. In hamsters infected with BA.5, three intranasal doses of S2-3-IgA2m2 at 1 mg/kg significantly reduce viral RNA loads and completely eliminate infectious particles in the trachea and lungs. Notably, even at single dose of 1 mg/kg, S2-3-IgA2m2 prophylactically administered through the intranasal route drastically reduces airway viral RNA loads and infectious particles. This study provides an effective weapon combating SARS-CoV-2, proposes a new strategy overcoming the virus escape, and lays strategic reserves for rapid response to potential future outbreaks of "SARS-CoV-3".
Asunto(s)
Anticuerpos , SARS-CoV-2 , Animales , Cricetinae , Ratones , Brotes de Enfermedades , Inmunoglobulina A Secretora , ARN Viral , Anticuerpos Antivirales , Anticuerpos NeutralizantesRESUMEN
The pandemic of COVID-19 caused by SARS-CoV-2 continues to spread around the world. Mutant strains of SARS-CoV-2 are constantly emerging. At present, Omicron variants have become mainstream. In this work, we carried out a systematic and comprehensive analysis of the reported spike protein antibodies, counting the epitopes and genotypes of these antibodies. We further comprehensively analyzed the impact of Omicron mutations on antibody epitopes and classified these antibodies according to their binding patterns. We found that the epitopes of the H-RBD class antibodies were significantly less affected by Omicron mutations than other classes. Binding and virus neutralization experiments showed that such antibodies could effectively inhibit the immune escape of Omicron. Cryo-EM results showed that this class of antibodies utilized a conserved mechanism to neutralize SARS-CoV-2. Our results greatly help us deeply understand the impact of Omicron mutations. Meanwhile, it also provides guidance and insights for developing Omicron antibodies and vaccines.
RESUMEN
Instruction: Rift valley fever virus (RVFV) is a mosquito-transmitted bunyavirus that causes severe disease in animals and humans. Nevertheless, there are no vaccines applied to prevent RVFV infection for human at present. Therefore, it is necessary to develop a safe and effective RVFV vaccine. Methods: We generated Ad5-GnGcopt, a replication-deficient recombinant Ad5 vector (human adenovirus serotype 5) expressing codon-optimized RVFV glycoproteins Gn and Gc, and evaluated its immunogenicity and protective efficacy in mice. Results and Discussion: Intramuscular immunization of Ad5-GnGcopt in mice induces strong and durable antibody production and robust cellular immune responses. Additionally, a single vaccination with Ad5-GnGcopt vaccination can completely protect interferon-α/ß receptor-deficient A129 mice from lethal RVFV infection. Our work indicates that Ad5-GnGcopt might represent a potential vaccine candidate against RVFV. However, further research is needed, first to confirm its efficacy in a natural animal host, and ultimately escalate as a potential vaccine candidate for humans.
RESUMEN
Current SARS-CoV-2 Omicron subvariants impose a heavy burden on global health systems by evading immunity from most developed neutralizing antibodies and vaccines. Here, we identified a nanobody (aSA3) that strongly cross-reacts with the receptor binding domain (RBD) of both SARS-CoV-1 and wild-type (WT) SARS-CoV-2. The dimeric construct of aSA3 (aSA3-Fc) tightly binds and potently neutralizes both SARS-CoV-1 and WT SARS-CoV-2. Based on X-ray crystallography, we engineered a bispecific nanobody dimer (2-3-Fc) by fusing aSA3-Fc to aRBD-2, a previously identified broad-spectrum nanobody targeting an RBD epitope distinct from aSA3. 2-3-Fc exhibits single-digit ng/mL neutralizing potency against all major variants of concerns including BA.5. In hamsters, a single systemic dose of 2-3-Fc at 10 mg/kg conferred substantial efficacy against Omicron infection. More importantly, even at three low doses of 0.5 mg/kg, 2-3-Fc prophylactically administered through the intranasal route drastically reduced viral RNA loads and completely eliminated infectious Omicron particles in the trachea and lungs. Finally, we discovered that 2(Y29G)-3-Fc containing a Y29G substitution in aRBD-2 showed better activity than 2-3-Fc in neutralizing BA.2.75, a recent Omicron subvariant that emerged in India. This study expands the arsenal against SARS-CoV-1, provides potential therapeutic and prophylactic candidates that fully cover major SARS-CoV-2 variants, and may offer a simple preventive approach against Omicron and its subvariants.
RESUMEN
Rift Valley fever virus (RVFV) is one of the most important virulent pathogens causing severe disease in animals and humans. However, there is currently no approved vaccine to prevent RVFV infection in humans. The use of human adenovirus serotype 4 (Ad4) as a vector for an RVFV vaccine has not been reported. Here, we report the generation of a replication-competent recombinant Ad4 vector expressing codon-optimized forms of the RVFV glycoproteins Gn and Gc (named Ad4-GnGc). Intramuscular immunization with Ad4-GnGc elicited robust neutralizing antibodies against RVFV and cellular immune responses in mice. A single low-dose vaccination with Ad4-GnGc completely protected interferon-α/ß receptor-deficient A129 mice from lethal RVFV infection. More importantly, Ad4-GnGc efficacy was not affected by pre-existing immunity to adenovirus serotype 5, which currently exists widely in populations. These results suggest that Ad4-GnGc is a promising vaccine candidate against RVFV.
Asunto(s)
Infecciones por Adenoviridae , Vacunas contra el Adenovirus , Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Vacunas Virales , Ratones , Humanos , Animales , Virus de la Fiebre del Valle del Rift/genética , Fiebre del Valle del Rift/prevención & control , Adenoviridae/genéticaRESUMEN
The global spread of SARS-CoV-2 and its variants poses a serious threat to human health worldwide. Recently, the emergence of Omicron has presented a new challenge to the prevention and control of the COVID-19 pandemic. A convenient and reliable in vitro neutralization assay is an important method for validating the efficiency of antibodies, vaccines, and other potential drugs. Here, we established an effective assay based on a pseudovirus carrying a full-length spike (S) protein of SARS-CoV-2 variants in the HIV-1 backbone, with a luciferase reporter gene inserted into the non-replicate pseudovirus genome. The key parameters for packaging the pseudovirus were optimized, including the ratio of the S protein expression plasmids to the HIV backbone plasmids and the collection time for the Alpha, Beta, Gamma, Kappa, and Omicron pseudovirus particles. The pseudovirus neutralization assay was validated using several approved or developed monoclonal antibodies, underscoring that Omicron can escape some neutralizing antibodies, such as REGN10987 and REGN10933, while S309 and ADG-2 still function with reduced neutralization capability. The neutralizing capacity of convalescent plasma from COVID-19 convalescent patients in Wuhan was tested against these pseudoviruses, revealing the immune evasion of Omicron. Our work established a practical pseudovirus-based neutralization assay for SARS-CoV-2 variants, which can be conducted safely under biosafety level-2 (BSL-2) conditions, and this assay will be a promising tool for studying and characterizing vaccines and therapeutic candidates against Omicron-included SARS-CoV-2 variants.
Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/terapia , Humanos , Inmunización Pasiva , Pruebas de Neutralización/métodos , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Sueroterapia para COVID-19RESUMEN
The SARS-CoV-2 Omicron variant shows substantial resistance to neutralization by infection- and vaccination-induced antibodies, highlighting the demands for research on the continuing discovery of broadly neutralizing antibodies (bnAbs). Here, we developed a panel of bnAbs against Omicron and other variants of concern (VOCs) elicited by vaccination of adenovirus-vectored COVID-19 vaccine (Ad5-nCoV). We also investigated the human longitudinal antibody responses following vaccination and demonstrated how the bnAbs evolved over time. A monoclonal antibody (mAb), named ZWD12, exhibited potent and broad neutralization against SARS-CoV-2 variants Alpha, Beta, Gamma, Kappa, Delta, and Omicron by blocking the spike protein binding to the angiotensin-converting enzyme 2 (ACE2) and provided complete protection in the challenged prophylactic and therapeutic K18-hACE2 transgenic mouse model. We defined the ZWD12 epitope by determining its structure in complex with the spike (S) protein via cryo-electron microscopy. This study affords the potential to develop broadly therapeutic mAb drugs and suggests that the RBD epitope bound by ZWD12 is a rational target for the design of a broad spectrum of vaccines.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Microscopía por Crioelectrón , Epítopos , Humanos , Ratones , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación , Proteínas del Envoltorio ViralRESUMEN
Lassa virus (LASV) is a rodent-borne arenavirus circulating in West African regions that causes Lassa fever (LF). LF is normally asymptomatic at the initial infection stage, but can progress to severe disease with multiorgan collapse and hemorrhagic fever. To date, the therapeutic choices are limited, and there is no approved vaccine for avoiding LASV infection. Adenoviral vector-based vaccines represent an effective countermeasure against LASV because of their safety and adequate immunogenicity, as demonstrated in use against other emerging viral infections. Here, we constructed and characterized a novel Ad5 (E1-, E3-) vectored vaccine containing the glycoprotein precursor (GPC) of LASV. Ad5-GPCLASV elicited both humoral and cellular immune responses in BALB/c mice. Moreover, a bioluminescent imaging-based BALB/c mouse model infected with GPC-bearing and luciferase-expressing replication-incompetent LASV pseudovirus was utilized to evaluate the vaccine efficacy. The bioluminescence intensity of immunized mice was significantly lower than that of control mice after being inoculated with LASV pseudovirus. This study suggests that Ad5-GPCLASV represents a potential vaccine candidate against LF.
Asunto(s)
Adenoviridae , Vectores Genéticos/inmunología , Fiebre de Lassa , Vacunas Virales/inmunología , África Occidental , Animales , Células HEK293 , Humanos , Inmunidad Celular , Fiebre de Lassa/inmunología , Fiebre de Lassa/prevención & control , Virus Lassa/inmunología , Ratones , Ratones Endogámicos BALB CRESUMEN
Clostridium tetani causes life-threatening disease by producing tetanus neurotoxin (TeNT), one of the most toxic protein substances. Toxicosis can be prevented and cured by administration of anti-TeNT neutralizing antibodies. Here, we identified a series of monoclonal antibodies (mAbs) derived from memory B cells of a healthy adult immunized with the C-terminal domain of TeNT (TeNT-Hc). Thirteen mAbs bound to both tetanus toxoid (TT) and TeNT-Hc, while two mAbs recognized only TT. VH3-23 was the most frequently used germline gene in these TT-binding mAbs, and the pairwise identity values of the VH gene sequences ranged from 27% to 69%. Three of these mAbs-T3, T7, and T9-6-completely protected mice from challenge with 2× LD50 of TeNT, and two (T2 and T18) significantly prolonged the survival time. The five neutralizing mAbs recognized distinct epitopes on TT, with binding affinities ranging from 0.123 to 11.9 nM. Our study provides promising therapeutic candidates for tetanus.
Asunto(s)
Anticuerpos Antibacterianos/administración & dosificación , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Neutralizantes/administración & dosificación , Clostridium tetani/inmunología , Vacuna contra Difteria y Tétanos/administración & dosificación , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/administración & dosificación , Inmunogenicidad Vacunal , Toxoide Tetánico/administración & dosificación , Tétanos/prevención & control , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Monoclonales/sangre , Anticuerpos Neutralizantes/sangre , Especificidad de Anticuerpos , Clostridium tetani/patogenicidad , Modelos Animales de Enfermedad , Epítopos , Femenino , Humanos , Ratones Endogámicos BALB C , Tétanos/inmunología , Tétanos/microbiología , Factores de Tiempo , VacunaciónRESUMEN
The unprecedented coronavirus disease 2019 (COVID-19) epidemic has created a worldwide public health emergency, and there is an urgent need to develop an effective vaccine to control this severe infectious disease. Here, we find that a single vaccination with a replication-defective human type 5 adenovirus encoding the SARS-CoV-2 spike protein (Ad5-nCoV) protect mice completely against mouse-adapted SARS-CoV-2 infection in the upper and lower respiratory tracts. Additionally, a single vaccination with Ad5-nCoV protects ferrets from wild-type SARS-CoV-2 infection in the upper respiratory tract. This study suggests that the mucosal vaccination may provide a desirable protective efficacy and this delivery mode is worth further investigation in human clinical trials.
Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/prevención & control , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/inmunología , Modelos Animales de Enfermedad , Diseño de Fármacos , Femenino , Vectores Genéticos , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genéticaRESUMEN
Developing therapeutics against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be guided by the distribution of epitopes, not only on the receptor binding domain (RBD) of the Spike (S) protein but also across the full Spike (S) protein. We isolated and characterized monoclonal antibodies (mAbs) from 10 convalescent COVID-19 patients. Three mAbs showed neutralizing activities against authentic SARS-CoV-2. One mAb, named 4A8, exhibits high neutralization potency against both authentic and pseudotyped SARS-CoV-2 but does not bind the RBD. We defined the epitope of 4A8 as the N-terminal domain (NTD) of the S protein by determining with cryo-eletron microscopy its structure in complex with the S protein to an overall resolution of 3.1 angstroms and local resolution of 3.3 angstroms for the 4A8-NTD interface. This points to the NTD as a promising target for therapeutic mAbs against COVID-19.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales/sangre , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/química , Anticuerpos Antivirales/metabolismo , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Antígenos Virales/inmunología , Linfocitos B/inmunología , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/terapia , Proteínas de la Nucleocápside de Coronavirus , Microscopía por Crioelectrón , Ensayo de Inmunoadsorción Enzimática , Genes de las Cadenas Pesadas de las Inmunoglobulinas , Humanos , Memoria Inmunológica , Persona de Mediana Edad , Mutación , Proteínas de la Nucleocápside/inmunología , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Fosfoproteínas , Neumonía Viral/terapia , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas/inmunología , Receptores de Coronavirus , Receptores Virales/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Adulto JovenRESUMEN
The Rift Valley fever virus (RVFV) is an arthropod-borne virus that can not only cause severe disease in domestic animals but also in humans. However, the licensed vaccines or available therapeutics for humans do not exist. Here, we report two Gn-specific neutralizing antibodies (NAbs), isolated from a rhesus monkey immunized with recombinant human adenoviruses type 4 expressing Rift Valley fever virus Gn and Gc protein (rHAdV4-GnGcopt). The two NAbs were both able to protect host cells from RVFV infection. The interactions between NAbs and Gn were then characterized to demonstrate that these two NAbs might preclude RVFV glycoprotein rearrangement, hindering the exposure of fusion loops in Gc to endosomal membranes after the virus invades the host cell. The target region for the two NAbs is located in the Gn domain III, implying that Gn is a desired target for developing vaccines and neutralizing antibodies against RVFV.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Fiebre del Valle del Rift/inmunología , Virus de la Fiebre del Valle del Rift/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/química , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Epítopos , Humanos , Inmunización , Macaca mulatta , Modelos Moleculares , Conformación Molecular , Pruebas de Neutralización , Unión Proteica , Fiebre del Valle del Rift/virología , Relación Estructura-Actividad , Proteínas del Envoltorio Viral/químicaRESUMEN
Ebola virus (EBOV) can cause severe hemorrhagic fever in humans, and no approved treatment is currently available. Although several antibodies have achieved good protection in animal models, the potential emerging isolates of ebolavirus and the unknown effects of experimental antibodies in humans underscore the need to develop additional antibodies to address the threat of Ebola. Here, we isolated a series of memory B cell-derived monoclonal antibodies from healthy Chinese adults vaccinated with Ad5-EBOV. These antibodies were encoded by diverse germline genes and had high levels of somatic hypermutation. Most antibodies were cross-reactive and could bind at least two ebolavirus glycoproteins (GPs). Seven neutralizing antibodies were identified using HIV-EBOV GP-Luc pseudovirus, and they effectively neutralized authentic EBOV. In particular, monoclonal antibody 2G1 exhibited potent cross-neutralization against HIV-EBOV/SUDV/BDBV GP-Luc bearing different ebolavirus GPs. We used truncated GPs, competition assays, and software prediction to analyze seven neutralizing antibodies, which bound four different epitopes on GP. Importantly, three of these antibodies provided complete protection in mice when administered one day post-infection. Our study expands the list of candidate antibodies and the options for successfully treating ebolavirus infection.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Animales , Femenino , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Masculino , RatonesRESUMEN
Given the increasing exploitation of antibodies in different contexts such as molecular diagnostics and therapeutics, it would be beneficial to unravel properties of antigen-antibody interaction with modeling of computational protein-protein docking, especially, in the absence of a cocrystal structure. However, obtaining a native-like antigen-antibody structure remains challenging due in part to failing to reliably discriminate accurate from inaccurate structures among tens of thousands of decoys after computational docking with existing scoring function. We hypothesized that some important physicochemical and energetic features could be used to describe antigen-antibody interfaces and identify native-like antigen-antibody structure. We prepared a dataset, a subset of Protein-Protein Docking Benchmark Version 4.0, comprising 37 nonredundant 3D structures of antigen-antibody complexes, and used it to train and test multivariate logistic regression equation which took several important physicochemical and energetic features of decoys as dependent variables. Our results indicate that the ability to identify native-like structures of our method is superior to ZRANK and ZDOCK score for the subset of antigen-antibody complexes. And then, we use our method in workflow of predicting epitope of anti-Ebola glycoprotein monoclonal antibody-4G7 and identify three accurate residues in its epitope.
Asunto(s)
Anticuerpos/química , Antígenos/química , Mapeo de Interacción de Proteínas , Análisis de Regresión , Algoritmos , Epítopos , Humanos , Unión Proteica , Conformación ProteicaRESUMEN
CRM197 (cross-reacting material 197), a non-toxic mutant of diphtheria toxin, has wide application potential in biopharmaceuticals. However, it is difficult to express CRM197 in bacteria other than Corynebacterium diphtheriae. Here we proposed a new alternative method to produce soluble CRM197 without label in Escherichia coli. In particular, a synthetic gene coding for CRM197, optimized for E. coli codon usage, was cloned in the pET32a (+) vector. Accordingly, the over-expression of the protein was simply induced with IPTG in E. coli BL21 (DE3). The target protein was soluble and accounted for about 40% of the total protein in the supernatant. Following an ultrasonic cytolysis step, the recombinant protein was purified by anion exchange, affinity and desalting chromatography and the purity of the final preparation reached 95%. Cytotoxicity tests showed that the IC50 value of CRM197 was 2.1×107 times the IC50 value of diphtheria toxin, and 9.6 times the IC50 value of diphtheria toxoid, telling that the target protein is safe and non-toxic. Subsequently, we found that both the high dose (20 µg) and the low dose (2 µg) of CRM197 were equally efficient in inducing an immune response against diphtheria toxiod in mice, and the antibodies titer of mice after three immunizations with low dose could reach 1:409 600. In conclusion, our findings provide a highly efficient strategy for the rapid production and purification of unlabeled and soluble recombinant CRM197 in E. coli, with good immunogenicity and safety.