Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732693

RESUMEN

The flammability of epoxy resins and knowing how to achieve curing are particularly important factors during use. A novel approach for enhancing the fire resistance and reducing the smoke emission of epoxy resin during the curing process is suggested, which involves the utilization of a three-source integrated polymerization intumescent flame-retardant. In this study, the synthesis of poly 4,4-diaminodiphenylsulfone spirocyclic pentaerythritol bisphosphonate (PCS) is achieved through using solution polymerization, utilizing 4,4'-diaminodiphenylsulfone (DDS) and spirocyclic pentaerythritol bisphosphorate disphosphoryl chloride (SPDPC) as initial components. Following that, the EP underwent the inclusion of PCS to examine its resistance to heat, its ability to prevent flames, its effectiveness in reducing smoke and its curing effect. Compared to the unmodified epoxy resin, the addition of PCS can not only cure the epoxy resin, but also decompose before the epoxy resin and has a good carbonization effect. With the addition of 7 wt.% PCS, the LOI value can achieve 31.2% and successfully pass the UL-94 test with a V-0 rating. Moreover, the cone calorimeter experiment demonstrated a noteworthy decline of 59.7% in the maximum heat release rate (pHRR), 63.7% in overall heat release (THR), and 42.3% in total smoke generation (TSP). Based on the examination of TG-FTIR and SEM findings, there is ample evidence to suggest that PCS, functioning as a phosphorus-nitrogen intumescent flame-retardant that combines three origins, has the potential to exhibit a favorable flame-retardant impact in both its gas and condensed phases.

2.
Cardiovasc Diagn Ther ; 14(2): 251-263, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38716313

RESUMEN

Background: The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in myocardial autopsy tissues has been observed in certain individuals with coronavirus disease 2019 (COVID-19). However, the duration of cardiac involvement remains uncertain among recovered COVID-19 patients. Our study aims to evaluate the long-term persistence of SARS-CoV-2 within cardiac tissue. Methods: We prospectively and consecutively evaluated the patients undergoing mitral valve replacement (MVR) and left atrial (LA) volume reduction surgery from May 25 to June 10, 2023 at our center, who had been approximately 6 months of recovery after Omicron wave. Patients tested positive for SARS-CoV-2 upon admission were excluded. The surgical LA tissue was collected in RNA preservation solution and stored at -80 ℃ immediately. Then SARS-CoV-2, interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) RNA expression in LA tissues were assessed through thrice-repeated reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analyses. Categorical variables were assessed using the Chi-square or Fisher's exact tests, and continuous variables was analyzed using the Mann-Whitney U test. Results: Nine of 41 patients were enrolled, all of whom tested negative for SARS-CoV-2 upon admission (two antigen and PCR tests). In four of nine patients, SARS-CoV-2 RNA was detected in their LA tissue, indicating viral colonization. Among the four positive cases, the IL-6 and IL-1ß relative expression levels in the LA tissue of one patient were increased approximately 55- and 110-fold, respectively, compared to those of SARS-CoV-2 (-) patients. Increased expression of IL-6 and IL-1ß were observed in the myocardium of this patient. Another patient demonstrated a remarkable 7-fold increase in both IL-6 and IL-1ß expression, surpassing that of SARS-CoV-2 (-) patients. Additionally, no other cardiac inflammation-related diseases or conditions were presented in these two patients. The IL-6 and IL-1ß expression levels of the remaining two patients were not significantly different from those of SARS-CoV-2 (-) patients. The relative expression levels of IL-6 and IL-1ß in cardiac tissues of all SARS-CoV-2 (-) patients were relatively low. Interestingly, despite abnormally elevated levels of IL-6 and IL-1ß within their cardiac tissue, two patients did not show a significant increase in serum IL-6 and IL-1ß levels when compared to other patients. Conclusions: Our research suggests that certain COVID-19-recovered patients have persistent colonization of SARS-CoV-2 in their cardiac tissue, accompanied by a local increase in inflammatory factors.

3.
Small ; : e2401502, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716798

RESUMEN

All-solid-state fluoride ion batteries (ASSFIBs) show remarkable potential as energy storage devices due to their low cost, superior safety, and high energy density. However, the poor ionic conductivity of F- conductor, large volume expansion, and the lack of a suitable anode inhibit their development. In this work, PbSnF4 solid electrolytes in different phases (ß- and γ-PbSnF4) are successfully synthesized and characterized. The ASSFIBs composed of ß-PbSnF4 electrolytes, a BiF3 cathode, and micrometer/nanometer size (µ-/n-) Sn anodes, exhibit substantial capacities. Compared to the µ-Sn anode, the n-Sn anode with nanostructure exhibits superior battery performance in the BiF3/ß-PbSnF4/Sn battery. The optimized battery delivers a high initial discharge capacity of 181.3 mAh g-1 at 8 mA g-1 and can be reversibly cycled at 40 mA g-1 with a high discharge capacity of over 100.0 mAh g-1 after 120 cycles at room temperature. Additionally, it displays high discharge capacities over 90.0 mAh g-1 with excellent cyclability over 100 cycles under -20 °C. Detailed characterization has confirmed that reducing Sn particle size and boosting external pressure are crucial for achieving good defluorination/fluorination behaviors in the Sn anode. These findings pave the way to designing ASSFIBs with high capacities and superior cyclability under different operating temperatures.

4.
Insects ; 15(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38667366

RESUMEN

Parental care behavior has evolved as a life history strategy to improve reproductive success, particularly in organisms facing challenging environments. However, the variation in maternal care, such as egg-guarding behavior in response to the social environment and the associated ecological consequence of competition, remains largely unknown. This study addresses a gap in current knowledge by examining the plasticity of maternal care behavior in the predatory mite C. eruditus and its impact on offspring survival and intra- and interspecific competition. Our results demonstrated that the reproductive females frequently exhibit egg-guarding behaviors, with enhanced maternal care efforts when the interspecific competitor is present. Egg masses are significantly more vulnerable to predation in the absence of maternal care. Guarding females increased egg survival rates and adversely influenced the survival of both con- and heterospecific competitors, with higher mortality rates being detected. Our findings highlight the ecological significance of maternal care behaviors and suggest that releasing C. eruditus and Neoseiulus cucumeris (Oudemans) together is not recommended for pest management in storage products.

5.
Foods ; 13(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38611301

RESUMEN

The objective of our study was to analyze and identify enzymatic peptides from straw mushrooms that can enhance salty taste with the aim of developing saltiness enhancement peptides to reduce salt intake and promote dietary health. We isolated taste-related peptides from the straw mushroom extract using ultrafiltration and identified them using UPLC-Q-TOF-MS/MS. The study found that the ultrafiltration fraction (500-2000 Da) of straw mushroom peptides had a saltiness enhancement effect, as revealed via subsequent E-tongue and sensory analyses. The ultrafiltration fractions (500-2000 Da) were found to contain 220 peptides, which were identified through UPLC-Q-TOF-MS/MS analysis. The interaction of these peptides with the T1R1/T1R3 receptor was also assessed. The investigation highlighted the significant involvement of Asp223, Gln243, Leu232, Asp251, and Pro254 in binding peptides from triple-enzymatically hydrolyzed straw mushrooms to T1R1/T1R3. Based on the binding energy and active site analysis, three peptides were selected for synthesis: DFNALPFK (-9.2 kcal/mol), YNEDNGIVK (-8.8 kcal/mol), and VPGGQEIKDR (-8.9 kcal/mol). Importantly, 3.2 mmol of VPGGQEIKDR increased the saltiness level of a 0.05% NaCl solution to that of a 0.15% NaCl solution. Additionally, the addition of 0.8 mmol of YNEDNGIVK to a 0.05% NaCl solution resulted in the same level of saltiness as a 0.1% NaCl solution.

6.
Front Psychol ; 15: 1338796, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529089

RESUMEN

The relationship between anxiety and sleep disorders is a key research topic in the academic community. However, evidence on the mechanism through which anxiety influences sleep disorders remains limited. The purpose of this study was to investigate the roles of flourishing and neuroticism in the mechanism through which anxiety influences sleep disorders in medical students. We constructed a moderated mediation model and tested the mediating role of flourishing and the moderating role of neuroticism in medical college students. The results showed that: (1) anxiety was significantly and positively related to sleep disorders and significantly and negatively related to flourishing; flourishing was significantly and negatively related to sleep disorders; neuroticism was significantly and positively related to sleep disorders; (2) flourishing had a mediation effect on the relationship between anxiety and sleep disorders; (3) neuroticism moderated the process through which flourishing mediated the effect of anxiety on sleep disorders. Our research expands the literature on the mechanism underlying the effects of anxiety on sleep disorders and provides insights into the potential prevention and intervention of sleep and emotional problems in medical students.

7.
ACS Appl Mater Interfaces ; 16(12): 15227-15241, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38498312

RESUMEN

Biobased-functionalized metal-organic frameworks (Bio-FUN-MOFs) stand out from the crowd of candidates in the flame-retardant field due to their multipathway flame-retardant mechanisms and green synthesis processes. However, exploring and designing Bio-FUN-MOFs tend to counteract the problem of compromising the flame-retardant advantages of MOFs themselves, which inevitably results in a waste of resources. Herein, a strategy in which MOFs are ecologically regulated through acid-base balance is presented for controllable preparation of Bio-FUN-MOFs by two birds with one stone, i.e., higher flame-retardant element loading and retention of more MOF structures. Specifically, the buffer layer is created on the periphery of ZIF-67 by weak etching of biobased alkali arginine to resist the excessive etching of ZIF-67 by phytic acid when loading phosphorus source and to preserve the integrity of internal crystals as much as possible. As a proof of concept, ZIF-67 was almost completely etched out by phytic acid in the absence of arginine. The arginine and phytic acid-functionalized ZIF-67 with yolk@shell structure (ZIF@Arg-Co-PA) obtained by this strategy, as a biobased flame retardant, reduces fire hazards for polyurea composites. At only 5 wt % loading, ZIF@Arg-Co-PA imparted polyurea composites with a limiting oxygen index of 23.2%, and the peaks of heat release rate, total heat release, and total smoke production were reduced by 43.8, 32.3, and 34.3%, respectively, compared to neat polyurea. Additionally, the prepared polyurea composites have acceptable mechanical properties. This work will shed light on the advanced structural design of polymer composites with excellent fire safety, especially environmentally friendly and efficient biobased MOF flame retardants.

8.
Molecules ; 29(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38474473

RESUMEN

Transition metal nitride negative electrode materials with a high capacity and electronic conduction are still troubled by the large volume change in the discharging procedure and the low lithium ion diffusion rate. Synthesizing the composite material of F-doped Fe3N and an N-doped porous carbon framework will overcome the foregoing troubles and effectuate a preeminent electrochemical performance. In this study, we created a simple route to obtain the composite of F-doped Fe3N nanoellipsoids and a 3D N-doped porous carbon framework under non-ammonia atmosphere conditions. Integrating the F-doped Fe3N nanoellipsoids with an N-doped porous carbon framework can immensely repress the problem of volume expansion but also substantially elevate the lithium ion diffusion rate. When utilized as a negative electrode for lithium-ion batteries, this composite bespeaks a stellar operational life and rate capability, releasing a tempting capacity of 574 mAh g-1 after 550 cycles at 1.0 A g-1. The results of this study will profoundly promote the evolution and application of transition metal nitrides in batteries.

9.
Int J Biol Macromol ; 262(Pt 2): 130174, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360235

RESUMEN

In this study, flash extraction was used to rapidly extract water-soluble polysaccharides from Ulva linza. The optimal extraction process for the flash extraction was determined by Box-Behnken design with extraction temperature 80 °C, extraction time 117 s, liquid-solid ratio 46:1 (mL/g) and a corresponding yield of 18.5 %. The crude Ulva linza polysaccharides (CULP) were subsequently isolated by chromatography technology to obtain purified Ulva linza polysaccharide (ULP) and characterized by monosaccharide composition and molecular weight determination analysis. Furthermore, the antioxidant bioactivity of ULP was studied and the results revealed that it had a good scavenging effect on DPPH, ABTS and OH, with IC50 values of 149.2 µg/mL, 252.5 µg/mL and 1073 µg/mL, respectively. After in vitro fermentation by human fecal microbiota, the pH value of fermentation culture significantly decreased to 5.06, suggesting that ULP could be hydrolyzed and utilized by gut microbiota. The abundance of beneficial bacteria including Bacteroides, Parabacteroides and Faecalibacterium was improved. Meanwhile, the relative abundance of Prevotella, Blautia and Ruminococcus was decreased, and the low ratio of these organisms might reveal positive effects on maintaining the balance of gut microbial biodiversity. These results suggested that the composition of the human gut microbiota could be modulated by ULP, and ULP might possess the potential to maintain gut homeostasis and improve human intestinal health.


Asunto(s)
Microbioma Gastrointestinal , Algas Marinas , Ulva , Humanos , Antioxidantes/química , Ulva/química , Polisacáridos/química
10.
Food Funct ; 15(6): 2879-2894, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38318946

RESUMEN

Agaricus bisporus contains amino acids associated with thickness and full-mouthfeel, making it a potential candidate for salt substitutes and flavor enhancers in various food applications. Kokumi peptides were isolated from the enzymatic digest of Agaricus bisporus using ultrafiltration nanofiltration, gel chromatographic separation, and RP-HPLC, coupled with sensory evaluation. Subsequently, the peptides, EWVPVTK and EYPPLGR, were selected for solid-phase synthesis based on molecular docking. Sensory analysis, including thresholds, time intensity, and dose-configuration relationships, indicated that EWVPVTK and EYPPLGR exhibited odor thresholds of 0.6021 mmol L-1 and 2.332 mmol L-1 in an aqueous solution. Molecular docking scores correlated with low sensory thresholds, signifying strong taste sensitivities. EWVPVTK, in particular, demonstrated a higher sense of richness at lower concentrations compared to EYPPLGR. Molecular docking and dynamics simulations elucidated that the interactions between Kokumi peptides and the CaSR receptor primarily involved hydrogen bonding, electrostatic interactions, and hydrophobic interactions. Both EWVPVTK and EYPPLGR exhibited stable binding to the CaSR receptor. Active binding sites were identified, with EWVPVTK interacting at Arg 66, Asp 216, Gln 245, and Asn 102, while EYPPLGR engaged with Ser 272, Gln 193, Glu 297, Ala-298, Tyr-2, and Agr-66 in hydrophilic interactions through hydrogen bonds. Notably, these two Kokumi peptides were found to be enriched in umami and sweet amino acids, underscoring their pivotal role in umami perception. This study not only identifies novel Kokumi peptides from Agaricus bisporus but also contributes theoretical foundations and insights for future studies in the realm of Kokumi peptides.


Asunto(s)
Agaricus , Péptidos , Gusto , Simulación del Acoplamiento Molecular , Simulación por Computador , Péptidos/química , Aminoácidos/química
11.
ACS Appl Mater Interfaces ; 16(6): 7617-7630, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38315971

RESUMEN

Up to now, metal-organic frameworks (MOFs) with open nanostructures have shown outstanding capabilities in trapping smoke particles compared to the original MOFs. However, only a few MOF-based strategies have been reported to synthesize hierarchical porous cages thus far, which are mainly restricted to environmentally unfriendly wet-chemical liquid methods. Herein, as a proof-of-concept, a gas-steamed metal-organic framework approach was designed to fabricate a series of cheeselike open cages with hierarchical porosity. Briefly, zeolitic imidazolate framework-67 (ZIF-67) and phytic acid were employed as precursor and etchant, respectively. Abandoning the conventional wet-chemical method, the coordination bond of ZIF-67 was cleaved by acidic steam, forming an open framework with a high specific surface area and a hierarchical porous structure. The universality of this method was also confirmed by the selection of different etchants. Impressively, they also show outstanding fume-toxic adsorption capability and labyrinth effects based on abundant and complex porous channels. At only 5 wt % loading, Co3O4@open ZIF-67 cage-2 (Co3O4@OZC-2) imparted polyurea (PUA) composites with a 21.2% limiting oxygen index, and the peak of heat release rate, total heat release, and total smoke production were reduced by around 37.5, 25.5, and 40.4%, respectively, compared to neat PUA. This work will shed light on the advanced structural design of polymer composites with high fire safety, especially smoke suppression performance, so as to obtain more feasible applications.

12.
Food Funct ; 15(5): 2459-2473, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38328886

RESUMEN

Yeast extract, a widely utilized natural substance in the food industry and biopharmaceutical field, holds significant potential for flavor enhancement. Kokumi peptides within yeast extracts were isolated through ultrafiltration and gel chromatography, followed by identification using liquid chromatography tandem mass spectrometry (LC-MS/MS). Two peptides, IQGFK and EDFFVR, were identified and synthesized using solid-phase methods based on molecular docking outcomes. Sensory evaluations and electronic tongue analyses conducted with chicken broth solutions revealed taste thresholds of 0.12 mmol L-1 for IQGFK and 0.16 mmol L-1 for EDFFVR, respectively, and both peptides exhibited kokumi properties. Additionally, through molecular dynamics simulations, the binding mechanisms between these peptides and the calcium-sensing receptor (CaSR) were explored. The findings indicated stable binding of both peptides to the receptor. IQGFK primarily interacted through electrostatic interactions, with key binding sites including Asp275, Asn102, Pro274, Trp70, Tyr218, and Ser147. EDFFVR mainly engaged via van der Waals energy and polar solvation free energy, with key binding sites being Asp275, Ile416, Pro274, Arg66, Ala298, and Tyr218. This suggests that both peptides can activate the CaSR, thereby inducing kokumi activity. This study provides a theoretical foundation and reference for the screening and identification of kokumi peptides, successfully uncovering two novel kokumi peptides derived from yeast extract.


Asunto(s)
Espectrometría de Masas en Tándem , Gusto , Gusto/fisiología , Cromatografía Liquida , Simulación del Acoplamiento Molecular , Péptidos/química , Receptores Sensibles al Calcio/metabolismo
13.
Cell Metab ; 36(3): 557-574.e10, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38237601

RESUMEN

Augmented CD4+ T cell response in autoimmunity is characterized by extensive metabolic reprogramming. However, the epigenetic molecule that drives the metabolic adaptation of CD4+ T cells remains largely unknown. Here, we show that lysine acetyltransferase 6A (KAT6A), an epigenetic modulator that is clinically associated with autoimmunity, orchestrates the metabolic reprogramming of glucose in CD4+ T cells. KAT6A is required for the proliferation and differentiation of proinflammatory CD4+ T cell subsets in vitro, and mice with KAT6A-deficient CD4+ T cells are less susceptible to experimental autoimmune encephalomyelitis and colitis. Mechanistically, KAT6A orchestrates the abundance of histone acetylation at the chromatin where several glycolytic genes are located, thus affecting glucose metabolic reprogramming and subsequent CD4+ T cell responses. Treatment with KAT6A small-molecule inhibitors in mouse models shows high therapeutic value for targeting KAT6A in autoimmunity. Our study provides novel insights into the epigenetic programming of immunometabolism and suggests potential therapeutic targets for patients with autoimmunity.


Asunto(s)
Lisina Acetiltransferasas , Linfocitos T , Animales , Humanos , Ratones , Autoinmunidad/genética , Linfocitos T CD4-Positivos/metabolismo , Epigénesis Genética , Glucosa/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Lisina Acetiltransferasas/genética , Lisina Acetiltransferasas/metabolismo , Linfocitos T/metabolismo
14.
Pestic Biochem Physiol ; 198: 105727, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225066

RESUMEN

The citrus red mite, Panonychus citri (McGregor), is a globally important pest that has developed severe resistance to various pesticides. Lufenuron has been widely used in the control of the related pests in citrus orchard ecosystem. In this study, the susceptibilities of egg, larva, deutonymph and female adult of P. citri to lufenuron was determined, and the LC50 values were 161.354 mg/L, 49.595 mg/L, 81.580 mg/L, and 147.006 mg/L, respectively. Life-table analysis indicated that the fecundities were significantly increased by 11.86% and 26.84% after the mites were treated with LC20 concentrations of lufenuron at the egg or deutonymph stages, respectively. After eggs were treated with lufenuron, the immature stage and longevity were also affected, and resulted in a significant increase in r, R0 and λ. After exposure of female adults to LC20 of lufenuron, the fecundity and longevity of F0 generation significantly decreased by 31.99% and 10.94%, respectively. Furthermore, the expression level of EcR and Vg was significantly inhibited upon mites was treated with lufenuron. However, lufenuron exposure has a positive effect on fecundity and R0 in F1 generation, the expression of all reproduction-related genes was significantly up-regulated. In conclusion, there was a stimulating effect on the offspring population. Our results will contribute to the assessment of the resurgence of P. citri in the field after the application of lufenuron and the development of integrated pest control strategies in citrus orchards.


Asunto(s)
Benzamidas , Fluorocarburos , Ácaros , Tetranychidae , Animales , Ecosistema , Reproducción
16.
Insect Sci ; 31(2): 354-370, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37641867

RESUMEN

Panonychus citri McGregor (Acari: Tetranychidae), a destructive citrus pest, causes considerable annual economic losses due to its short lifespan and rapid resistance development. MicroRNA (miRNA)-induced RNA interference is a promising approach for pest control because of endogenous regulation of pest growth and development. To search for miRNAs with potential insecticidal activity in P. citri, genome-wide analysis of miRNAs at different developmental stages was conducted, resulting in the identification of 136 miRNAs, including 73 known and 63 novel miRNAs. A total of 17 isomiRNAs and 12 duplicated miRNAs were characterized. MiR-1 and miR-252-5p were identified as reference miRNAs for P. citri and Tetranychus urticae. Based on differential expression analysis, treatments with miR-let-7a and miR-315 mimics and the miR-let-7a antagomir significantly reduced the egg hatch rate and resulted in abnormal egg development. Overexpression or downregulation of miR-34-5p and miR-305-5p through feeding significantly decreased the adult eclosion rate and caused molting defects. The 4 miRNAs, miR-let-7a, miR-315, miR-34-5p, and miR-305-5p, had important regulatory functions and insecticidal properties in egg hatching and adult eclosion. In general, these data advance our understanding of miRNAs in mite biology, which can assist future studies on insect-specific miRNA-based green pest control technology.


Asunto(s)
Insecticidas , MicroARNs , Ácaros , Tetranychidae , Animales , MicroARNs/genética , MicroARNs/metabolismo , Insecticidas/farmacología , Insecticidas/metabolismo , Interferencia de ARN
18.
J Agric Food Chem ; 71(48): 18973-18985, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37915201

RESUMEN

Chinese steamed bread (CSB) made with commercial yeasts and traditional Chinese sourdoughs was analyzed for the flavor and microbial communities. Sensory attributes were assessed using quantitative descriptive analysis (QDA). Results showed that commercial yeast CSB-1 (JMMT1), a yeast-based sample, had stronger milky and sweet attributes, while commercial yeast CSB-2 (JMMT2) had more pronounced yeasty attributes. Among the sourdough-based samples, Shandong traditional sourdough steamed bread (SDMT) exhibited a winelike character with a weak sweet aftertaste, whereas Shanxi traditional sourdough steamed bread (SXMT) had a distinct sour attribute and a less prominent floury taste. SAFE-GC-O-MS analysis identified 40 aroma compounds with FD values ≥2, including 33 key aroma compounds with an OAV of ≥1. Compounds such as 2,3-butanediol, decanal, methyl isobutenyl ketone, gamma-nonanolactone, ethyl caprate, 2-ethylhexyl acetate, vanillin, and indole contributed significantly to the diverse aroma profiles. High-throughput sequencing revealed dominant strains: Bacillus in JMMT1, Lactobacillus in JMMT2, Bacillus in SDMT, and Lactobacillus in SXMT. Over two-thirds of the aroma compounds showed correlations with microorganisms. Notably, Acetobacter exhibited a highly significant correlation with butanoic acid, while Lactobacillus played a significant role in the formation of ester flavors. These findings contribute to the flavor evaluation and microbial community analysis of steamed bread made with different leavening agents, providing valuable insights into their relationship.


Asunto(s)
Pan , Microbiota , Saccharomyces cerevisiae , Pan/microbiología , Fermentación , Lactobacillus , Saccharomyces cerevisiae/genética , Bacillus
19.
Front Public Health ; 11: 1247233, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841727

RESUMEN

There exist numerous pathogens that are capable of causing infections within the central nervous system (CNS); however, conventional detection and analysis methods prove to be challenging. Clinical diagnosis of CNS infections often depends on clinical characteristics, cerebrospinal fluid (CSF) analysis, imaging, and molecular detection assays. Unfortunately, these methods can be both insensitive and time consuming, which can lead to missed diagnoses and catastrophic outcomes, especially in the case of infrequent diseases. Despite the application of appropriate prophylactic regimens and evidence-based antimicrobial agents, CNS infections continue to result in significant morbidity and mortality in hospital settings. Metagenomic next-generation sequencing (mNGS) is a novel tool that enables the identification of thousands of pathogens in a target-independent manner in a single run. The role of this innovative detection method in clinical pathogen diagnostics has matured over time. In this particular research, clinicians employed mNGS to investigate a suspected CNS infection in a child with leukemia, and unexpectedly detected Toxoplasma gondii. Case: A 3-year-old child diagnosed with T-cell lymphoblastic lymphoma was admitted to our hospital due to a 2-day history of fever and headache, along with 1 day of altered consciousness. Upon admission, the patient's Glasgow Coma Scale score was 14. Brain magnetic resonance imaging revealed multiple abnormal signals. Due to the patient's atypical clinical symptoms and laboratory test results, determining the etiology and treatment plan was difficulty.Subsequently, the patient underwent next-generation sequencing examination of cerebrospinal fluid. The following day, the results indicated the presence of Toxoplasma gondii. The patient received treatment with a combination of sulfamethoxazole (SMZ) and azithromycin. After approximately 7 days, the patient's symptoms significantly improved, and they were discharged from the hospital with oral medication to continue at home. A follow-up polymerase chain reaction (PCR) testing after about 6 weeks revealed the absence of Toxoplasma. Conclusion: This case highlights the potential of mNGS as an effective method for detecting toxoplasmic encephalitis (TE). Since mNGS can identify thousands of pathogens in a single run, it may be a promising detection method for investigating the causative pathogens of central nervous system infections with atypical features.


Asunto(s)
Infecciones del Sistema Nervioso Central , Encefalitis , Humanos , Preescolar , Encéfalo/diagnóstico por imagen , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Encefalitis/diagnóstico , Encefalitis/líquido cefalorraquídeo
20.
Sci Adv ; 9(42): eadh4626, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37862412

RESUMEN

Attaining substantial areal capacity (>3 mAh/cm2) and extended cycle longevity in all-solid-state lithium metal batteries necessitates the implementation of solid-state electrolytes (SSEs) capable of withstanding elevated critical current densities and capacities. In this study, we report a high-performing vacancy-rich Li9N2Cl3 SSE demonstrating excellent lithium compatibility and atmospheric stability and enabling high-areal capacity, long-lasting all-solid-state lithium metal batteries. The Li9N2Cl3 facilitates efficient lithium-ion transport due to its disordered lattice structure and presence of vacancies. Notably, it resists dendrite formation at 10 mA/cm2 and 10 mAh/cm2 due to its intrinsic lithium metal stability. Furthermore, it exhibits robust dry-air stability. Incorporating this SSE in Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode-based all-solid-state batteries, we achieve substantial cycling stability (90.35% capacity retention over 1500 cycles at 0.5 C) and high areal capacity (4.8 mAh/cm2 in pouch cells). These findings pave the way for lithium metal batteries to meet electric vehicle performance demands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA